China Oncology ›› 2022, Vol. 32 ›› Issue (1): 1-12.doi: 10.19401/j.cnki.1007-3639.2022.01.001
• Specialists’ Commentary • Previous Articles Next Articles
ZHU Xinzhe, LI Hao, XU Huaxiang, LUO Guopei, YU Xianjun()
Received:
2022-01-02
Revised:
2022-01-05
Online:
2022-01-30
Published:
2022-01-30
Contact:
YU Xianjun
E-mail:yuxianjun@fudanpci.org
Share article
CLC Number:
ZHU Xinzhe, LI Hao, XU Huaxiang, LUO Guopei, YU Xianjun. Advances in basic research, clinical diagnosis and treatment of pancreatic cancer in 2021[J]. China Oncology, 2022, 32(1): 1-12.
[1] |
SIEGEL R L,, MILLER K D,, FUCHS H E, et al. Cancer statistics, 2021[J]. CA Cancer J Clin, 2021, 71(1): 7-33.
doi: 10.3322/caac.v71.1 |
[2] | CABASAG C J,, FERLAY J,, LAVERSANNE M, et al. Pancreatic cancer: an increasing global public health concern[J]. Gut, 2021. Online ahead of print. |
[3] |
CARIOLI G,, MALVEZZI M,, BERTUCCIO P, et al. European cancer mortality predictions for the year 2021 with focus on pancreatic and female lung cancer[J]. Ann Oncol, 2021, 32(4): 478-487.
doi: 10.1016/j.annonc.2021.01.006 |
[4] |
SUN D,, CAO M,, LI H, et al. Cancer burden and trends in China: a review and comparison with Japan and South Korea[J]. Chin J Cancer Res, 2020, 32(2): 129-139.
doi: 10.21147/j.issn.1000-9604.2020.02.01 |
[5] |
MIZRAHI J D,, SURANA R,, VALLE J W, et al. Pancreatic cancer[J]. Lancet, 2020, 395(10242): 2008-2020.
doi: 10.1016/S0140-6736(20)30974-0 |
[6] |
KLEIN A P. Pancreatic cancer epidemiology: understanding the role of lifestyle and inherited risk factors[J]. Nat Rev Gastroenterol Hepatol, 2021, 18(7): 493-502.
doi: 10.1038/s41575-021-00457-x |
[7] |
MOCCI E,, KUNDU P,, WHEELER W, et al. Smoking modifies pancreatic cancer risk loci on 2q21.3[J]. Cancer Res, 2021, 81(11): 3134-3143.
doi: 10.1158/0008-5472.CAN-20-3267 |
[8] |
HUANG B Z,, PANDOL S J,, JEON C Y, et al. New-onset diabetes, longitudinal trends in metabolic markers, and risk of pancreatic cancer in a heterogeneous population[J]. Clin Gastroenterol Hepatol, 2020, 18(8): 1812-1821. e1817.
doi: 10.1016/j.cgh.2019.11.043 |
[9] | CHAN T T,, TSE Y K,, LUI R N, et al. Fatty pancreas is independently associated with subsequent diabetes mellitus development: a 10-year prospective cohort study[J]. Clin Gastroenterol Hepatol, 2021. Online ahead of print. |
[10] | SCHWARTZ N R M,, MATRISIAN L M,, SHRADER E E, et al. Potential cost-effectiveness of risk-based pancreatic cancer screening in patients with new-onset diabetes[J]. J Natl Compr Canc Netw, 2021: 1-9. |
[11] |
GIRI B,, SETHI V,, MODI S, et al. Heat shock protein 70 in pancreatic diseases: friend or foe[J]. J Surg Oncol, 2017, 116(1): 114-122.
doi: 10.1002/jso.v116.1 |
[12] |
QIAN W,, CHEN K,, QIN T,, et al. The EGFR-HSF 1 axis accelerates the tumorigenesis of pancreatic cancer[J]. J Exp Clin Cancer Res, 2021, 40(1): 25.
doi: 10.1186/s13046-020-01823-4 |
[13] |
DEL POGGETTO E,, HO I L,, BALESTRIERI C, et al. Epithelial memory of inflammation limits tissue damage while promoting pancreatic tumorigenesis[J]. Science, 2021, 373(6561): eabj0486.
doi: 10.1126/science.abj0486 |
[14] |
TSANG E S,, TOPHAM J T,, KARASINSKA J M, et al. Delving into early-onset pancreatic ductal adenocarcinoma: how does age fit in?[J]. Clin Cancer Res, 2021, 27(1): 246-254.
doi: 10.1158/1078-0432.CCR-20-1042 |
[15] |
OPITZ F V,, HAEBERLE L,, DAUM A, et al. Tumor microenvironment in pancreatic intraepithelial neoplasia[J]. Cancers (Basel), 2021, 13(24): 6188.
doi: 10.3390/cancers13246188 |
[16] |
HAYASHI A,, HONG J,, IACOBUZIO-DONAHUE C A. The pancreatic cancer genome revisited[J]. Nat Rev Gastroenterol Hepatol, 2021, 18(7): 469-481.
doi: 10.1038/s41575-021-00463-z |
[17] |
SIMANSHU D K,, NISSLEY D V,, MCCORMICK F. RAS proteins and their regulators in human disease[J]. Cell, 2017, 170(1): 17-33.
doi: 10.1016/j.cell.2017.06.009 |
[18] | KRISHNAN T,, ROBERTS-THOMSON R,, BROADBRIDGE V, et al. Targeting mutated KRAS genes to treat solid tumours[J]. Mol Diagn Ther, 2021. Online ahead of print. |
[19] |
CANON J,, REX K,, SAIKI A Y, et al. The clinical KRAS (G12C) inhibitor AMG 510 drives anti-tumour immunity[J]. Nature, 2019, 575(7781): 217-223.
doi: 10.1038/s41586-019-1694-1 |
[20] |
SATURNO G,, LOPES F,, NICULESCU-DUVAZ I, et al. The paradox-breaking PANraf plus src family kinase inhibitor, CCT3833, is effective in mutant KRAS-driven cancers[J]. Ann Oncol, 2021, 32(2): 269-278.
doi: 10.1016/j.annonc.2020.10.483 |
[21] |
WANG J,, CHEN Y,, HUANG C, et al. Valosin-containing protein stabilizes mutant p53 to promote pancreatic cancer growth[J]. Cancer Res, 2021, 81(15): 4041-4053.
doi: 10.1158/0008-5472.CAN-20-3855 |
[22] |
KASSARDJIAN A,, WANG H L. SMAD4-expressing pancreatic ductal adenocarcinomas have better response to neoadjuvant therapy and significantly lower lymph node metastasis rates[J]. Pancreas, 2020, 49(9): 1153-1160.
doi: 10.1097/MPA.0000000000001636 |
[23] |
WANG C,, ZHANG T,, LIAO Q, et al. Metformin inhibits pancreatic cancer metastasis caused by SMAD4 deficiency and consequent HNF4G upregulation[J]. Protein Cell, 2021, 12(2): 128-144.
doi: 10.1007/s13238-020-00760-4 |
[24] |
GRANT R C,, DENROCHE R,, JANG G H, et al. Clinical and genomic characterisation of mismatch repair deficient pancreatic adenocarcinoma[J]. Gut, 2021, 70(10): 1894-1903.
doi: 10.1136/gutjnl-2020-320730 |
[25] |
HSU F C,, ROBERTS N J,, CHILDS E, et al. Risk of pancreatic cancer among individuals with pathogenic variants in the ATM gene[J]. JAMA Oncol, 2021, 7(11): 1664-1668.
doi: 10.1001/jamaoncol.2021.3701 |
[26] |
SCARPA A,, REAL F X,, LUCHINI C. Genetic unrelatedness of co-occurring pancreatic adenocarcinomas and IPMNs challenges current views of clinical management[J]. Gut, 2018, 67(9): 1561-1563.
doi: 10.1136/gutjnl-2018-316151 |
[27] |
FUJIKURA K,, HOSODA W,, FELSENSTEIN M, et al. Multiregion whole-exome sequencing of intraductal papillary mucinous neoplasms reveals frequent somatic KLF4 mutations predominantly in low-grade regions[J]. Gut, 2021, 70(5): 928-939.
doi: 10.1136/gutjnl-2020-321217 |
[28] |
GUPTA V K,, SHARMA N S,, DURDEN B, et al. Hypoxia-driven oncometabolite L-2HG maintains stemness-differentiation balance and facilitates immune evasion in pancreatic cancer[J]. Cancer Res, 2021, 81(15): 4001-4013.
doi: 10.1158/0008-5472.CAN-20-2562 |
[29] |
MEHRA S,, DESHPANDE N,, NAGATHIHALLI N. Targeting PI3K pathway in pancreatic ductal adenocarcinoma: rationale and progress[J]. Cancers (Basel), 2021, 13(17): 4434.
doi: 10.3390/cancers13174434 |
[30] |
BIANCUR D E,, KAPNER K S,, YAMAMOTO K, et al. Functional genomics identifies metabolic vulnerabilities in pancreatic cancer[J]. Cell Metab, 2021, 33(1): 199-210. e198.
doi: 10.1016/j.cmet.2020.10.018 |
[31] |
HU Q,, QIN Y,, JI S, et al. MTAP deficiency-induced metabolic reprogramming creates a vulnerability to cotargeting de novo purine synthesis and glycolysis in pancreatic cancer[J]. Cancer Res, 2021, 81(19): 4964-4980.
doi: 10.1158/0008-5472.CAN-20-0414 |
[32] | TSAI P Y,, LEE M S,, JADHAV U, et al. Adaptation of pancreatic cancer cells to nutrient deprivation is reversible and requires glutamine synthetase stabilization by MTORC1[J]. Proc Natl Acad Sci U S A, 2021, 118(10): e2003014118. |
[33] |
HOSEIN A N,, BREKKEN R A,, MAITRA A. Pancreatic cancer stroma: an update on therapeutic targeting strategies[J]. Nat Rev Gastroenterol Hepatol, 2020, 17(8): 487-505.
doi: 10.1038/s41575-020-0300-1 |
[34] |
HO W J,, JAFFEE E M,, ZHENG L. The tumour microenvironment in pancreatic cancer-clinical challenges and opportunities[J]. Nat Rev Clin Oncol, 2020, 17(9): 527-540.
doi: 10.1038/s41571-020-0363-5 |
[35] | TAKAHASHI R,, MACCHINI M,, SUNAGAWA M, et al. Interleukin-1β-induced pancreatitis promotes pancreatic ductal adenocarcinoma via B lymphocyte-mediated immune suppression[J]. Gut, 2021, 70(2): 330-341. |
[36] |
GRÜNWALD B T,, DEVISME A,, ANDRIEUX G, et al. Spatially confined sub-tumor microenvironments in pancreatic cancer[J]. Cell, 2021, 184(22): 5577-5592. e5518.
doi: 10.1016/j.cell.2021.09.022 |
[37] |
SCHOEPS B,, ECKFELD C,, PROKOPCHUK O, et al. TIMP1 triggers neutrophil extracellular trap formation in pancreatic cancer[J]. Cancer Res, 2021, 81(13): 3568-3579.
doi: 10.1158/0008-5472.CAN-20-4125 |
[38] |
SERRANO-POZO A,, DAS S,, HYMAN B T. APOE and Alzheimer’s disease: advances in genetics, pathophysiology, and therapeutic approaches[J]. Lancet Neurol, 2021, 20(1): 68-80.
doi: 10.1016/S1474-4422(20)30412-9 |
[39] |
KEMP S B,, CARPENTER E S,, STEELE N G, et al. Apolipoprotein e promotes immune suppression in pancreatic cancer through NF-κB-mediated production of CXCL1[J]. Cancer Res, 2021, 81(16): 4305-4318.
doi: 10.1158/0008-5472.CAN-20-3929 |
[40] |
LIU H,, SHI Y,, QIAN F. Opportunities and delusions regarding drug delivery targeting pancreatic cancer-associated fibroblasts[J]. Adv Drug Deliv Rev, 2021, 172: 37-51.
doi: 10.1016/j.addr.2021.02.012 |
[41] |
HUTTON C,, HEIDER F,, BLANCO-GOMEZ A, et al. Single-cell analysis defines a pancreatic fibroblast lineage that supports anti-tumor immunity[J]. Cancer Cell, 2021, 39(9): 1227-1244. e1220.
doi: 10.1016/j.ccell.2021.06.017 |
[42] |
LI T J,, LI H,, ZHANG W H, et al. Human splenic ter cells: a relevant prognostic factor acting via the artemin-GFRα3-ERK pathway in pancreatic ductal adenocarcinoma[J]. Int J Cancer, 2021, 148(7): 1756-1767.
doi: 10.1002/ijc.v148.7 |
[43] |
CAO L,, HUANG C,, CUI ZHOU D, et al. Proteogenomic characterization of pancreatic ductal adenocarcinoma[J]. Cell, 2021, 184(19): 5031-5052. e5026.
doi: 10.1016/j.cell.2021.08.023 |
[44] |
LUO G,, JIN K,, DENG S, et al. Roles of CA19-9 in pancreatic cancer: biomarker, predictor and promoter[J]. Biochim Biophys Acta Rev Cancer, 2021, 1875(2): 188409.
doi: 10.1016/j.bbcan.2020.188409 |
[45] | SINGHI A D,, WOOD L D. Early detection of pancreatic cancer using DNA-based molecular approaches[J]. Nat Rev Gastroenterol Hepatol, 2021, 18(7): 457-468. |
[46] |
MAJUMDER S,, TAYLOR W R,, FOOTE P H, et al. High detection rates of pancreatic cancer across stages by plasma assay of novel methylated DNA markers and CA19-9[J]. Clin Cancer Res, 2021, 27(9): 2523-2532.
doi: 10.1158/1078-0432.CCR-20-0235 |
[47] |
DINGES S S,, HOHM A,, VANDERGRIFT L A, et al. Cancer metabolomic markers in urine: evidence, techniques and recommendations[J]. Nat Rev Urol, 2019, 16(6): 339-362.
doi: 10.1038/s41585-019-0185-3 |
[48] | DE MATTEIS S,, BONAFÈ M,, GIUDETTI A M. Urinary metabolic biomarkers in cancer patients: an overview[J]. Methods Mol Biol, 2021, 2292: 203-212. |
[49] |
RADON T P,, MASSAT N J,, JONES R, et al. Identification of a three-biomarker panel in urine for early detection of pancreatic adenocarcinoma[J]. Clin Cancer Res, 2015, 21(15): 3512-3521.
doi: 10.1158/1078-0432.CCR-14-2467 |
[50] |
YANG K S,, CIPRANI D,, O’SHEA A, et al. Extracellular vesicle analysis allows for identification of invasive IPMN[J]. Gastroenterology, 2021, 160(4): 1345-1358. e1311.
doi: 10.1053/j.gastro.2020.11.046 |
[51] | MILLIKAN K W,, DEZIEL D J,, SILVERSTEIN J C, et al. Prognostic factors associated with resectable adenocarcinoma of the head of the pancreas[J]. Am Surg, 1999, 65(7): 618-623; discussion 623-624. |
[52] | VAN DER HEIJDE N,, LOF S,, BUSCH O R, et al. Incidence and impact of postoperative pancreatic fistula after minimally invasive and open distal pancreatectomy[J]. Surgery, 2021. Online ahead of print. |
[53] | KLOMPMAKER S,, DE ROOIJ T,, KOERKAMP B G, et al. International validation of reduced major morbidity after minimally invasive distal pancreatectomy compared with open pancreatectomy[J]. Ann Surg, 2021, 274(6): e966-e973. |
[54] |
DE ROOIJ T,, VAN HILST J,, VAN SANTVOORT H, et al. Minimally invasive versus open distal pancreatectomy (leopard) a multicenter patient-blinded randomized controlled trial[J]. Ann Surg, 2019, 269(1): 2-9.
doi: 10.1097/SLA.0000000000002979 |
[55] |
ZHANG J,, SANS M,, GARZA K Y, et al. Mass spectrometry technologies to advance care for cancer patients in clinical and intraoperative use[J]. Mass Spectrom Rev, 2021, 40(5): 692-720.
doi: 10.1002/mas.v40.5 |
[56] | KING M E,, ZHANG J,, LIN J Q, et al. Rapid diagnosis and tumor margin assessment during pancreatic cancer surgery with the masspec pen technology[J]. Proc Natl Acad Sci U S A, 2021, 118(28): e2104411118. |
[57] |
KUNZMANN V,, SIVEKE J T,, ALGÜL H, et al. Nab-paclitaxel plus gemcitabine versus nab-paclitaxel plus gemcitabine followed by FOLFIRINOX induction chemotherapy in locally advanced pancreatic cancer (NEOLAP-AIO-PAK-0113): a multicentre, randomised, phase 2 trial[J]. Lancet Gastroenterol Hepatol, 2021, 6(2): 128-138.
doi: 10.1016/S2468-1253(20)30330-7 |
[58] |
DAHAN L,, WILLIET N,, LE MALICOT K, et al. Randomized phase Ⅱ trial evaluating two sequential treatments in first line of metastatic pancreatic cancer: results of the panoptimox-prodige 35 trial[J]. J Clin Oncol, 2021, 39(29): 3242-3250.
doi: 10.1200/JCO.20.03329 |
[59] |
SOHAL D P,, WALSH R M,, RAMANATHAN R K, et al. Pancreatic adenocarcinoma: treating a systemic disease with systemic therapy[J]. J Natl Cancer Inst, 2014, 106(3): dju011.
doi: 10.1093/jnci/dju011 |
[60] |
SOHAL D P S,, DUONG M,, AHMAD S A, et al. Efficacy of perioperative chemotherapy for resectable pancreatic adenocarcinoma: a phase 2 randomized clinical trial[J]. JAMA Oncol, 2021, 7(3): 421-427.
doi: 10.1001/jamaoncol.2020.7328 |
[61] |
HECHT J R,, LONARDI S,, BENDELL J, et al. Randomized phase Ⅲ study of FOLFOX alone or with pegilodecakin as second-line therapy in patients with metastatic pancreatic cancer that progressed after gemcitabine (sequoia)[J]. J Clin Oncol, 2021, 39(10): 1108-1118.
doi: 10.1200/JCO.20.02232 |
[62] | ROJAS L A,, BALACHANDRAN V P. Scaling the immune incline in PDAC[J]. Nat Rev Gastroenterol Hepatol, 2021, 18(7): 453-454. |
[63] |
VONDERHEIDE R H. CD 40 agonist antibodies in cancer immunotherapy[J]. Annu Rev Med, 2020, 71: 47-58.
doi: 10.1146/med.2020.71.issue-1 |
[64] |
O’HARA M H,, O’REILLY E M,, ROSEMARIE M, et al. A phase ib study of cd40 agonistic monoclonal antibody apx005m together with gemcitabine (GEM) and nab-paclitaxel (NP) with or without nivolumab (nivo) in untreated metastatic ductal pancreatic adenocarcinoma (PDAC) patients[J]. Cancer Res, 2019, 79(13): 3.
doi: 10.1158/0008-5472.CAN-18-3552 |
[65] | JIANG H,, COURAU T,, BORISON J, et al. Activating immune recognition in pancreatic ductal adenocarcinoma via autophagy inhibition, mek blockade, and CD40 agonism[J]. Gastroenterology, 2021. Online ahead of print. |
[66] |
MARELLI G,, CHARD DUNMALL L S,, YUAN M, et al. A systemically deliverable vaccinia virus with increased capacity for intertumoral and intratumoral spread effectively treats pancreatic cancer[J]. J Immunother Cancer, 2021, 9(1): e001624.
doi: 10.1136/jitc-2020-001624 |
[67] |
MELISI D,, OH D Y,, HOLLEBECQUE A, et al. Safety and activity of the TGF-β receptor Ⅰ kinase inhibitor galunisertib plus the anti-PD-L1 antibody durvalumab in metastatic pancreatic cancer[J]. J Immunother Cancer, 2021, 9(3): e002068.
doi: 10.1136/jitc-2020-002068 |
[68] |
ANWAR M Y,, WILLIAMS G R,, PALURI R K. CAR-T cell therapy in pancreaticobiliary cancers: a focused review of clinical data[J]. J Gastrointest Cancer, 2021, 52(1): 1-10.
doi: 10.1007/s12029-020-00457-1 |
[69] |
LESCH S,, BLUMENBERG V,, STOIBER S, et al. T cells armed with C-X-C chemokine receptor type 6 enhance adoptive cell therapy for pancreatic tumours[J]. Nat Biomed Eng, 2021, 5(11): 1246-1260.
doi: 10.1038/s41551-021-00737-6 |
[70] |
GOOD C R,, AZNAR M A,, KURAMITSU S, et al. An NK-like CAR-T cell transition in CAR-T cell dysfunction[J]. Cell, 2021, 184(25): 6081-6100. e6026.
doi: 10.1016/j.cell.2021.11.016 |
[71] |
ALI A I,, WANG M,, VON SCHEIDT B, et al. A histone deacetylase inhibitor, panobinostat, enhances chimeric antigen receptor T-cell antitumor effect against pancreatic cancer[J]. Clin Cancer Res, 2021, 27(22): 6222-6234.
doi: 10.1158/1078-0432.CCR-21-1141 |
[72] |
PETRELLI F,, COMITO T,, GHIDINI A, et al. Stereotactic body radiation therapy for locally advanced pancreatic cancer: a systematic review and pooled analysis of 19 trials[J]. Int J Radiat Oncol Biol Phys, 2017, 97(2): 313-322.
doi: 10.1016/j.ijrobp.2016.10.030 |
[73] |
MAHADEVAN A,, MONINGI S,, GRIMM J, et al. Maximizing tumor control and limiting complications with stereotactic body radiation therapy for pancreatic cancer[J]. Int J Radiat Oncol Biol Phys, 2021, 110(1): 206-216.
doi: 10.1016/j.ijrobp.2020.11.017 |
[74] |
MUELLER A C,, PIPER M,, GOODSPEED A, et al. Induction of ADAM10 by radiation therapy drives fibrosis, resistance, and epithelial-to-mesenchyal transition in pancreatic cancer[J]. Cancer Res, 2021, 81(12): 3255-3269.
doi: 10.1158/0008-5472.CAN-20-3892 |
[75] |
REYNGOLD M,, O’REILLY E M,, VARGHESE A M, et al. Association of ablative radiation therapy with survival among patients with inoperable pancreatic cancer[J]. JAMA Oncol, 2021, 7(5): 735-738.
doi: 10.1001/jamaoncol.2021.0057 |
[76] |
ZHU X,, CAO Y,, LIU W, et al. Stereotactic body radiotherapy plus pembrolizumab and trametinib versus stereotactic body radiotherapy plus gemcitabine for locally recurrent pancreatic cancer after surgical resection: an open-label, randomised, controlled, phase 2 trial[J]. Lancet Oncol, 2021, 22(8): 1093-1102.
doi: 10.1016/S1470-2045(21)00286-2 |
[77] |
ARVIND R,, CHANDANA S R,, BORAD M J, et al. Tumor-treating fields: a fourth modality in cancer treatment, new practice updates[J]. Crit Rev Oncol Hematol, 2021, 168: 103535.
doi: 10.1016/j.critrevonc.2021.103535 |
[78] |
RIVERA F,, BENAVIDES M,, GALLEGO J, et al. Tumor treating fields in combination with gemcitabine or gemcitabine plus nab-paclitaxel in pancreatic cancer: results of the panova phase 2 study[J]. Pancreatology, 2019, 19(1): 64-72.
doi: 10.1016/j.pan.2018.10.004 |
[79] |
BAI L,, PFEIFER T,, GROSS W, et al. Establishment of tumor treating fields combined with mild hyperthermia as novel supporting therapy for pancreatic cancer[J]. Front Oncol, 2021, 11: 738801.
doi: 10.3389/fonc.2021.738801 |
[1] | HAO Xian, HUANG Jianjun, YANG Wenxiu, LIU Jinting, ZHANG Junhong, LUO Yubei, LI Qing, WANG Dahong, GAO Yuwei, TAN Fuyun, BO Li, ZHENG Yu, WANG Rong, FENG Jianglong, LI Jing, ZHAO Chunhua, DOU Xiaowei. Establishment of primary breast cancer cell line as new model for drug screening and basic research [J]. China Oncology, 2024, 34(6): 561-570. |
[2] | CHEN Hong, CAO Zhiyun. Recent progress in the construction and application of patient-derived pancreatic cancer organoid models [J]. China Oncology, 2024, 34(6): 590-597. |
[3] | QIAN Bin, CHEN Haiquan. Important progress in surgical treatment of lung cancer in 2023 [J]. China Oncology, 2024, 34(4): 335-339. |
[4] | FENG Zheng, GUO Qinhao, ZHU Jun, WU Xiaohua, WEN Hao. Progress in treatment of gynecological cancer in 2023 [J]. China Oncology, 2024, 34(4): 340-360. |
[5] | XU Yonghu, XU Dazhi. Progress and prospects of gastric cancer treatment in the 21st century [J]. China Oncology, 2024, 34(3): 239-249. |
[6] | WANG Xuefei, ZHOU Peng, TANG Zhaoqing. New progress and development trend of surgical treatment for gastric cancer [J]. China Oncology, 2024, 34(3): 250-258. |
[7] | ZHANG Qi, XIU Bingqiu, WU Jiong. Progress of important clinical research of breast cancer in China in 2023 [J]. China Oncology, 2024, 34(2): 135-142. |
[8] | ZHANG Siyuan, JIANG Zefei. Important research progress in clinical practice for advanced breast cancer in 2023 [J]. China Oncology, 2024, 34(2): 143-150. |
[9] | WANG Zhaobu, LI Xing, YU Xinmiao, JIN Feng. Important research progress in clinical practice for early breast cancer in 2023 [J]. China Oncology, 2024, 34(2): 151-160. |
[10] | TAN Xiaolang, YAO Sha, WANG Guihua, PENG Luogen. Research on uPAR promoting proliferation, migration, and chemoresistance of pancreatic cancer by inhibiting autophagy via MAPK signaling [J]. China Oncology, 2024, 34(10): 944-956. |
[11] | LI Tianjiao, YE Longyun, JIN Kaizhou, WU Weiding, YU Xianjun. Advances in basic research, clinical diagnosis and treatment of pancreatic cancer in 2023 [J]. China Oncology, 2024, 34(1): 1-12. |
[12] | LI Tong, YANG Huijuan. Progress in diagnosis and treatment of mucinous ovarian cancer [J]. China Oncology, 2024, 34(1): 90-96. |
[13] | KANG Yinnan, CHEN Shun, XIE Youcheng, ZHENG Ying, HE Yujing, LI Chuyi, YU Xiaohui. Application and research progress of antibody drug conjugates in HER2 positive advanced gastric cancer [J]. China Oncology, 2023, 33(8): 790-800. |
[14] | QU Ning, WANG Yuting, MA Ben, WANG Yu. Advances in basic research, clinical diagnosis and treatment of thyroid cancer in 2022 [J]. China Oncology, 2023, 33(5): 423-430. |
[15] | JIANG Jinling, ZHOU Chenfei, WANG Chao, ZHAO Liqin, WU Junwei, ZHANG Jun. Advanced progress in research and diagnosis of gastric cancer in 2022 [J]. China Oncology, 2023, 33(4): 303-314. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
沪ICP备12009617
Powered by Beijing Magtech Co. Ltd