China Oncology ›› 2023, Vol. 33 ›› Issue (4): 303-314.doi: 10.19401/j.cnki.1007-3639.2023.04.001
• Specialists' Commentary • Previous Articles Next Articles
JIANG Jinling1(), ZHOU Chenfei1,2, WANG Chao1, ZHAO Liqin1, WU Junwei1,2, ZHANG Jun1,2(
)
Received:
2023-02-17
Revised:
2023-04-17
Online:
2023-04-30
Published:
2023-05-15
Contact:
ZHANG Jun
Share article
CLC Number:
JIANG Jinling, ZHOU Chenfei, WANG Chao, ZHAO Liqin, WU Junwei, ZHANG Jun. Advanced progress in research and diagnosis of gastric cancer in 2022[J]. China Oncology, 2023, 33(4): 303-314.
[1] |
SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249.
doi: 10.3322/caac.v71.3 |
[2] |
SHAH D, BENTREM D. Environmental and genetic risk factors for gastric cancer[J]. J Surg Oncol, 2022, 125(7): 1096-1103.
doi: 10.1002/jso.26869 pmid: 35481919 |
[3] |
GARCIA-PELAEZ J, BARBOSA-MATOS R, SÃO JOSÉ C, et al. Gastric cancer genetic predisposition and clinical presentations: established heritable causes and potential candidate genes[J]. Eur J Med Genet, 2022, 65(1): 104401.
doi: 10.1016/j.ejmg.2021.104401 |
[4] |
CARNEIRO F. Familial and hereditary gastric cancer, an overview[J]. Best Pract Res Clin Gastroenterol, 2022, 58/59: 101800.
doi: 10.1016/j.bpg.2022.101800 |
[5] |
YAN C W, ZHU M, DING Y B, et al. Meta-analysis of genome-wide association studies and functional assays decipher susceptibility genes for gastric cancer in Chinese populations[J]. Gut, 2020, 69(4): 641-651.
doi: 10.1136/gutjnl-2019-318760 pmid: 31383772 |
[6] |
GRADY W M. Epigenetic alterations in the gastrointestinal tract: current and emerging use for biomarkers of cancer[J]. Adv Cancer Res, 2021, 151: 425-468.
doi: 10.1016/bs.acr.2021.02.006 pmid: 34148620 |
[7] |
HARON N H, MOHAMAD HANIF E A, ABDUL MANAF M R, et al. Microsatellite instability and altered expressions of MLH1 and MSH2 in gastric cancer[J]. Asian Pac J Cancer Prev, 2019, 20(2): 509-517.
doi: 10.31557/APJCP.2019.20.2.509 |
[8] |
USUI G, MATSUSAKA K, MANO Y, et al. DNA methylation and genetic aberrations in gastric cancer[J]. Digestion, 2021, 102(1): 25-32.
doi: 10.1159/000511243 pmid: 33070127 |
[9] |
OUE N, SENTANI K, SAKAMOTO N, et al. Molecular carcinogenesis of gastric cancer: Lauren classification, mucin phenotype expression, and cancer stem cells[J]. Int J Clin Oncol, 2019, 24(7): 771-778.
doi: 10.1007/s10147-019-01443-9 pmid: 30980196 |
[10] | ZHANG R, LI H, LI N, et al. Risk factors for gastric cancer: a large-scale, population-based case-control study[J]. Chin Med J (Engl), 2021, 134(16): 1952-1958. |
[11] |
DENG W, JIN L, ZHUO H, et al. Alcohol consumption and risk of stomach cancer: a meta-analysis[J]. Chem Biol Interact, 2021, 336: 109365.
doi: 10.1016/j.cbi.2021.109365 |
[12] |
RAZA Y, AHMED A, KHAN A, et al. Helicobacter pylori severely reduces expression of DNA repair proteins PMS2 and ERCC1 in gastritis and gastric cancer[J]. DNA repair (Amst), 2020, 89: 102836.
doi: 10.1016/j.dnarep.2020.102836 |
[13] |
ALIPOUR M. Molecular mechanism of Helicobacter pylori-induced gastric cancer[J]. J Gastrointest Canc, 2021, 52(1): 23-30.
doi: 10.1007/s12029-020-00518-5 |
[14] |
YUAN Q, DENG D, PAN C, et al. Integration of transcriptomics, proteomics, and metabolomics data to reveal HER2-associated metabolic heterogeneity in gastric cancer with response to immunotherapy and neoadjuvant chemotherapy[J]. Front Immunol, 2022, 13: 951137.
doi: 10.3389/fimmu.2022.951137 |
[15] |
GUO T, TANG X H, GAO X Y, et al. A liquid biopsy signature of circulating exosome-derived mRNAs, miRNAs and lncRNAs predict therapeutic efficacy to neoadjuvant chemotherapy in patients with advanced gastric cancer[J]. Mol Cancer, 2022, 21(1): 216.
doi: 10.1186/s12943-022-01684-9 pmid: 36510184 |
[16] |
ZHU Y, ZHAO Y, CAO Z, et al. Identification of three immune subtypes characterized by distinct tumor immune microenvironment and therapeutic response in stomach adenocarcinoma[J]. Gene, 2022, 818: 146177.
doi: 10.1016/j.gene.2021.146177 |
[17] |
CORTÉS-GUIRAL D, HÜBNER M, ALYAMI M, et al. Primary and metastatic peritoneal surface malignancies[J]. Nat Rev Dis Primers, 2021, 7(1): 91.
doi: 10.1038/s41572-021-00326-6 |
[18] |
LI D, WANG Y, DONG C, et al. CST1 inhibits ferroptosis and promotes gastric cancer metastasis by regulating GPX4 protein stability via OTUB1[J]. Oncogene, 2023, 42(2): 83-98.
doi: 10.1038/s41388-022-02537-x |
[19] |
AL-MARZOUKI L, STAVRAKOS V S, PAL S, et al. Soluble factors in malignant ascites promote the metastatic adhesion of gastric adenocarcinoma cells[J]. Gastric Cancer, 2023, 26(1): 55-68.
doi: 10.1007/s10120-022-01338-1 |
[20] |
TIAN C, ZHAO J, LIU D, et al. Identification of metabolism-related genes for predicting peritoneal metastasis in patients with gastric cancer[J]. BMC Genom Data, 2022, 23(1): 84.
doi: 10.1186/s12863-022-01096-0 pmid: 36503378 |
[21] |
TAKAHASHI K, KURASHINA K, YAMAGUCHI H, et al. Altered intraperitoneal immune microenvironment in patients with peritoneal metastases from gastric cancer[J]. Front Immunol, 2022, 13: 969468.
doi: 10.3389/fimmu.2022.969468 |
[22] |
VALASTYAN S, WEINBERG R A. Tumor metastasis: molecular insights and evolving paradigms[J]. Cell, 2011, 147(2): 275-292.
doi: 10.1016/j.cell.2011.09.024 pmid: 22000009 |
[23] | KWA M Q, HERUM K M, BRAKEBUSCH C. Cancer-associated fibroblasts: how do they contribute to metastasis?[J]. Clin Exp Metastasis, 2019, 36(2): 71-86. |
[24] |
ZHAO Z X, ZHANG Y Q, SUN H, et al. Calcipotriol abrogates cancer-associated fibroblast-derived IL-8-mediated oxaliplatin resistance in gastric cancer cells via blocking PI3K/AKT signaling[J]. Acta Pharmacol Sin, 2023, 44(1): 178-188.
doi: 10.1038/s41401-022-00927-1 |
[25] |
LI X, SUN Z, PENG G, et al. Single-cell RNA sequencing reveals a pro-invasive cancer-associated fibroblast subgroup associated with poor clinical outcomes in patients with gastric cancer[J]. Theranostics, 2022, 12(2): 620-638.
doi: 10.7150/thno.60540 pmid: 34976204 |
[26] |
MAK T K, LI X, HUANG H, et al. The cancer-associated fibroblast-related signature predicts prognosis and indicates immune microenvironment infiltration in gastric cancer[J]. Front Immunol, 2022, 13: 951214.
doi: 10.3389/fimmu.2022.951214 |
[27] |
YAMAMOTO Y, KASASHIMA H, FUKUI Y, et al. The heterogeneity of cancer-associated fibroblast subpopulations: their origins, biomarkers, and roles in the tumor microenvironment[J]. Cancer Sci, 2023, 114(1): 16-24.
doi: 10.1111/cas.v114.1 |
[28] | 王佳艳, 刘政. 肿瘤相关中性粒细胞调控胃癌发展的研究进展[J]. 医学研究生学报, 2020, 33(2): 210-214. |
WANG J Y, LIU Z. Recent advances in tumor-associated neutrophils regulate the progression of gastric cancer[J]. J Med Postgrad, 2020, 33(2): 210-214. | |
[29] |
LI J C, ZOU X M, YANG S F, et al. Neutrophil extracellular traps participate in the development of cancer-associated thrombosis in patients with gastric cancer[J]. World J Gastroenterol, 2022, 28(26): 3132-3149.
doi: 10.3748/wjg.v28.i26.3132 |
[30] |
YANG S, ZOU X, LI J, et al. Immunoregulation and clinical significance of neutrophils/NETs-ANGPT2 in tumor microenvironment of gastric cancer[J]. Front Immunol, 2022, 13: 1010434.
doi: 10.3389/fimmu.2022.1010434 |
[31] | HAO S X, SHOU M Y, MA J, et al. Correlation analysis of serum pepsinogen, interleukin, and TNF-α with hp infection in patients with gastric cancer: a randomized parallel controlled clinical study[J]. Comput Math Methods Med, 2022, 2022: 9277847. |
[32] |
QIN C, SONG Y, GAI Y, et al. Gallium-68-labeled fibroblast activation protein inhibitor PET in gastrointestinal cancer: insights into diagnosis and management[J]. Eur J Nucl Med Mol Imaging, 2022, 49(12): 4228-4240.
doi: 10.1007/s00259-022-05847-0 |
[33] |
LI J J, SHAN H B, GU M F, et al. Endoscopic ultrasound combined with submucosal saline injection for differentiation of T1a and T1b esophageal squamous cell carcinoma: a novel technique[J]. Endoscopy, 2013, 45(8): 667-670.
doi: 10.1055/s-0033-1344024 pmid: 23807801 |
[34] |
HE L J, XIE C, WANG Z X, et al. Submucosal saline injection followed by endoscopic ultrasound versus endoscopic ultrasound only for distinguishing between T1a and T1b esophageal cancer[J]. Clin Cancer Res, 2020, 26(2): 384-390.
doi: 10.1158/1078-0432.CCR-19-1722 |
[35] |
WATANABE H, MIWA H, TERAI T, et al. Endoscopic ultrasonography for colorectal cancer using submucosal saline solution injection[J]. Gastrointest Endosc, 1997, 45(6): 508-511.
pmid: 9199910 |
[36] |
PARK J Y, JEON T J. Diagnostic evaluation of endoscopic ultrasonography with submucosal saline injection for differentiating between T1a and T1b early gastric cancer[J]. World J Gastroenterol, 2022, 28(46): 6564-6572.
doi: 10.3748/wjg.v28.i46.6564 |
[37] |
HUANG C M, LIU H, HU Y F, et al. Laparoscopic vs open distal gastrectomy for locally advanced gastric cancer: five-year outcomes from the CLASS-01 randomized clinical trial[J]. JAMA Surg, 2022, 157(1): 9-17.
doi: 10.1001/jamasurg.2021.5104 |
[38] |
SHIBASAKI S, NAKAUCHI M, SERIZAWA A, et al. Clinical advantage of standardized robotic total gastrectomy for gastric cancer: a single-center retrospective cohort study using propensity-score matching analysis[J]. Gastric Cancer, 2022, 25(4): 804-816.
doi: 10.1007/s10120-022-01288-8 pmid: 35298742 |
[39] |
KUROKAWA Y, DOKI Y, MIZUSAWA J, et al. Bursectomy versus omentectomy alone for resectable gastric cancer (JCOG1001): a phase 3, open-label, randomised controlled trial[J]. Lancet Gastroenterol Hepatol, 2018, 3(7): 460-468.
doi: 10.1016/S2468-1253(18)30090-6 |
[40] |
KUROKAWA Y, DOKI Y, MIZUSAWA J, et al. Five-year follow-up of a randomized clinical trial comparing bursectomy and omentectomy alone for resectable gastric cancer (JCOG1001)[J]. Br J Surg, 2022, 110(1): 50-56.
doi: 10.1093/bjs/znac373 pmid: 36369984 |
[41] |
KIM Y W, MIN J S, YOON H M, et al. Laparoscopic sentinel node navigation surgery for stomach preservation in patients with early gastric cancer: a randomized clinical trial[J]. J Clin Oncol, 2022, 40(21): 2342-2351.
doi: 10.1200/JCO.21.02242 |
[42] |
PARK S H, HUH H, CHOI S I, et al. Impact of the deep neuromuscular block on oncologic quality of laparoscopic surgery in obese gastric cancer patients: a randomized clinical trial[J]. J Am Coll Surg, 2022, 234(3): 326-339.
doi: 10.1097/XCS.0000000000000061 |
[43] |
YU J R, GAO Y, CHEN L, et al. Effect of S-1 plus oxaliplatin compared with fluorouracil, leucovorin plus oxaliplatin as perioperative chemotherapy for locally advanced, resectable gastric cancer: a randomized clinical trial[J]. JAMA Netw Open, 2022, 5(2): e220426.
doi: 10.1001/jamanetworkopen.2022.0426 |
[44] |
KAKEJI Y, YOSHIDA K, KODERA Y, et al. Three-year outcomes of a randomized phase Ⅲ trial comparing adjuvant chemotherapy with S-1 plus docetaxel versus S-1 alone in stage Ⅲ gastric cancer: JACCRO GC-07[J]. Gastric Cancer, 2022, 25(1): 188-196.
doi: 10.1007/s10120-021-01224-2 |
[45] | ZHU X D, HUANG M Z, WANG Y S, et al. XELOX doublet regimen versus EOX triplet regimen as first-line treatment for advanced gastric cancer: an open-labeled, multicenter, randomized, prospective phase Ⅲ trial (EXELOX)[J]. Cancer Commun (Lond), 2022, 42(4): 314-326. |
[46] |
ISHIGAMI H, FUJIWARA Y, FUKUSHIMA R, et al. Phase Ⅲ trial comparing intraperitoneal and intravenous paclitaxel plus S-1 versus cisplatin plus S-1 in patients with gastric cancer with peritoneal metastasis: PHOENIX-GC trial[J]. J Clin Oncol, 2018, 36(19): 1922-1929.
doi: 10.1200/JCO.2018.77.8613 |
[47] |
SHI M, YANG Z, LU S, et al. Oxaliplatin plus S-1 with intraperitoneal paclitaxel for the treatment of Chinese advanced gastric cancer with peritoneal metastases[J]. BMC Cancer, 2021, 21(1): 1344.
doi: 10.1186/s12885-021-09027-5 pmid: 34922478 |
[48] |
VATANDOUST S, BRIGHT T, ROY A C, et al. Phase 1 trial of intraperitoneal paclitaxel in combination with intravenous cisplatin and oral capecitabine in patients with advanced gastric cancer and peritoneal metastases (IPGP study)[J]. Asia Pac J Clin Oncol, 2022, 18(4):404-409.
doi: 10.1111/ajco.v18.4 |
[49] |
CHIA FRCS D K A, MRCP R S, FRCS G K, et al. Outcomes of a phase Ⅱ study of intraperitoneal paclitaxel plus systemic capecitabine and oxaliplatin (XELOX) for gastric cancer with peritoneal metastases[J]. Ann Surg Oncol, 2023, 30(3): 1889-1890.
doi: 10.1245/s10434-022-12877-3 |
[50] |
SWAIN S M, MILES D, KIM S B, et al. Pertuzumab, trastuzumab, and docetaxel for HER2-positive metastatic breast cancer (CLEOPATRA): end-of-study results from a double-blind, randomised, placebo-controlled, phase 3 study[J]. Lancet Oncol, 2020, 21(4): 519-530.
doi: S1470-2045(19)30863-0 pmid: 32171426 |
[51] |
HOFHEINZ R D, MERX K, HAAG G M, et al. FLOT versus FLOT/trastuzumab/pertuzumab perioperative therapy of human epidermal growth factor receptor 2-positive resectable esophagogastric adenocarcinoma: a randomized phase Ⅱ trial of the AIO EGA study group[J]. J Clin Oncol, 2022, 40(32): 3750-3761.
doi: 10.1200/JCO.22.00380 |
[52] |
LORENZEN S, THUSS-PATIENCE P, PAULIGK C, et al. FOLFIRI plus ramucirumab versus paclitaxel plus ramucirumab as second-line therapy for patients with advanced or metastatic gastroesophageal adenocarcinoma with or without prior docetaxel-results from the phase Ⅱ RAMIRIS study of the German gastric cancer study group at AIO[J]. Eur J Cancer, 2022, 165: 48-57.
doi: 10.1016/j.ejca.2022.01.015 |
[53] |
KOBAYSHI K, SUYAMA K, KATSUYA H, et al. A phase Ⅱ multicenter trial assessing the efficacy and safety of first-line S-1 + ramucirumab in elderly patients with advanced/recurrent gastric cancer: KSCC1701[J]. Eur J Cancer, 2022, 166: 279-286.
doi: 10.1016/j.ejca.2022.02.028 |
[54] |
AHN S, LEE J, HONG M, et al. FGFR2 in gastric cancer: protein overexpression predicts gene amplification and high H-index predicts poor survival[J]. Mod Pathol, 2016, 29(9): 1095-1103.
doi: 10.1038/modpathol.2016.96 |
[55] |
WAINBERG Z A, ENZINGER P C, KANG Y K, et al. Bemarituzumab in patients with FGFR2b-selected gastric or gastro-oesophageal junction adenocarcinoma (FIGHT): a randomised, double-blind, placebo-controlled, phase 2 study[J]. Lancet Oncol, 2022, 23(11): 1430-1440.
doi: 10.1016/S1470-2045(22)00603-9 pmid: 36244398 |
[56] |
SAHIN U, TURECI O, MANIKHAS G, et al. FAST: a randomised phase Ⅱ study of zolbetuximab (IMAB362) plus EOX versus EOX alone for first-line treatment of advanced CLDN18.2-positive gastric and gastro-oesophageal adenocarcinoma[J]. Ann Oncol, 2021, 32(5): 609-619.
doi: 10.1016/j.annonc.2021.02.005 |
[57] |
QI C S, GONG J F, LI J, et al. Claudin18.2-specific CART cells in gastrointestinal cancers: phase 1 trial interim results[J]. Nat Med, 2022, 28(6): 1189-1198.
doi: 10.1038/s41591-022-01800-8 |
[58] | ANDRÉ T, TOUGERON D, PIESSEN G, et al. Neoadjuvant nivolumab plus ipilimumab and adjuvant nivolumab in patients (pts) with localized microsatellite instability-high (MSI)/mismatch repair deficient (dMMR) oeso-gastric adenocarcinoma (OGA): the GERCOR NEONIPIGA phase Ⅱ study[J]. J Clin Oncol, 2023, 41(2): 255-265. |
[59] | MIN L Z, LIU N, ZHOU Y, et al. Efficacy and safety of camrelizumab combined with FLOT versus FLOT alone as neoadjuvant therapy in patients with resectable locally advanced gastric and gastroesophageal junction adenocarcinoma who received D2 radical gastrectomy[J]. Ann Oncol, 2022, 33: S555-S580. |
[60] |
JIANG H P, YU X F, LI N, et al. Efficacy and safety of neoadjuvant sintilimab, oxaliplatin and capecitabine in patients with locally advanced, resectable gastric or gastroesophageal junction adenocarcinoma: early results of a phase 2 study[J]. J Immunother Cancer, 2022, 10(3): e003635.
doi: 10.1136/jitc-2021-003635 |
[61] |
JANJIGIAN Y Y, KAWAZOE A, YAÑEZ P, et al. The KEYNOTE-811 trial of dual PD-1 and HER2 blockade in HER2-positive gastric cancer[J]. Nature, 2021, 600(7890): 727-730.
doi: 10.1038/s41586-021-04161-3 |
[62] | SHEN L, GONG J, NIU Z, et al. The preliminary efficacy and safety of KN026 combined with KN046 treatment in HER2-positive locally advanced unresectable or metastatic gastric/gastroesophageal junction cancer without prior systemic treatment in a phase Ⅱ study[J]. Ann Oncol, 2022, 33(S7): S1102. |
[63] |
LIU T, BAI Y, LIN X, et al. First-line nivolumab plus chemotherapy vs chemotherapy in patients with advanced gastric, gastroesophageal junction and esophageal adenocarcinoma: CheckMate 649 Chinese subgroup analysis[J]. Int J Cancer, 2023, 152(4): 749-760.
doi: 10.1002/ijc.v152.4 |
[64] | SHITARA K, JANJIGIAN Y Y, MOEHLER M H, et al. Nivolumab (NIVO) plus chemotherapy (chemo) versus chemo as first-line (1L) treatment for advanced gastric cancer/gastroesophageal junction cancer/esophageal adenocarcinoma (GC/GEJC/EAC): expanded efficacy, safety, and subgroup analyses from CheckMate 649[J]. J Clin Oncol, 2022, 40: Abstract 240. |
[65] |
HELLMANN M D, PAZ-ARES L, BERNABE CARO R, et al. Nivolumab plus ipilimumab in advanced non-small cell lung cancer[J]. N Engl J Med, 2019, 381(21): 2020-2031.
doi: 10.1056/NEJMoa1910231 |
[66] | LORENZEN S, THUSS-PATIENCE P C, FOLPRECHT G, et al. FOLFOX plus nivolumab and ipilimumab versus FOLFOX induction followed by nivolumab and ipilimumab in patients with previously untreated advanced or metastatic adenocarcinoma of the stomach or gastroesophageal junction: results from the randomized phase Ⅱ Moonlight trial of the AIO[C]. ESMO 2022: Abstract 1203O. |
[67] |
FUKUOKA S, HARA H, TAKAHASHI N, et al. Regorafenib plus nivolumab in patients with advanced gastric or colorectal cancer: an open-label, dose-escalation, and dose-expansion phase Ⅰb trial (REGONIVO, EPOC1603)[J]. J Clin Oncol, 2020, 38(18): 2053-2061.
doi: 10.1200/JCO.19.03296 |
[68] | SHITARA K, BEN-AHARON I, ROJAS C, et al. First-line lenvatinib (Len) + pembrolizumab (Pembro) + chemotherapy (Chemo) vs chemo in advanced/metastatic gastroesophageal adenocarcinoma: LEAP-015 safety run-in[J]. Ann Oncol, 2022, 33: S555-S580. |
[69] | CYTRYN S, JOSHI S, KU G Y, et al. Regorafenib (REGO) with nivolumab (NIVO) and FOLFOX in HER2 negative esophagogastric cancer (EGC)[J]. Ann Oncol, 2022, 33: S555-S580. |
[70] | SU L, ZHAO S, LIN P, et al. Camrelizumab plus apatinib combined with POF in patients with untreated advanced gastric cancer (UAGC): a single-center, open-label, single-arm, phase Ⅱ trial (SYLT-017)[J]. Ann Oncol, 2022, 33: S1119-S1120. |
[71] | TOUGERON D, DAHAN L, EL HAJBI F, et al. PRODIGE 59-DURIGAST trial: a randomised phase Ⅱ study evaluating FOLFIRI plus durvalumab and FOLFIRI plus durvalumab plus tremelimumab in second-line treatment of patients with advanced gastric or gastro-oesophageal junction adenocarcinoma[J]. Ann Oncol, 2022, 33: S555-S580. |
[72] |
JIANG Z C, ZHANG W, YANG L, et al. Nab-paclitaxel plus sintilimab as second-line therapy for advanced or metastatic gastric or gastroesophageal junction adenocarcinoma (G/GEJA): preliminary results from an open-label, single-arm, phase 2 study[J]. J Clin Oncol, 2022, 40: 293-293.
doi: 10.1200/JCO.2022.40.28_suppl.293 |
[73] |
TANG Z Q, WANG Y, LIU D, et al. The Neo-PLANET phase Ⅱ trial of neoadjuvant camrelizumab plus concurrent chemoradiotherapy in locally advanced adenocarcinoma of stomach or gastroesophageal junction[J]. Nat Commun, 2022, 13(1): 6807.
doi: 10.1038/s41467-022-34403-5 |
[74] |
ZHU M, CHEN C, FOSTER N R, et al. Pembrolizumab in combination with neoadjuvant chemoradiotherapy for patients with resectable adenocarcinoma of the gastroesophageal junction[J]. Clin Cancer Res, 2022, 28(14): 3021-3031.
doi: 10.1158/1078-0432.CCR-22-0413 pmid: 35552651 |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
沪ICP备12009617
Powered by Beijing Magtech Co. Ltd