China Oncology ›› 2022, Vol. 32 ›› Issue (1): 61-67.doi: 10.19401/j.cnki.1007-3639.2022.01.008
• Review • Previous Articles Next Articles
JIN Yizi, LIN Mingxi, ZHANG Jian()
Received:
2021-05-12
Revised:
2021-08-05
Online:
2022-01-30
Published:
2022-01-30
Contact:
ZHANG Jian
E-mail:syner2000@163.com
Share article
CLC Number:
JIN Yizi, LIN Mingxi, ZHANG Jian. Targeting DNA damage response deficiency in the treatment of breast cancer[J]. China Oncology, 2022, 32(1): 61-67.
Tab. 1
The main agents targeting DDR in the clinical development beyond PARP inhibitors"
Target | Role in DDR | Agent | Clinical trial number (phase) | Regimens in clinical trial |
---|---|---|---|---|
ATM | Checkpoint signaling | AZD-0156 | NCT02588105 (Ⅰ) | Monotherapy/combination with olaparib or chemotherapy or other |
ATR | Facilitates the stabilization of replication fork and restart | Ceralasertib (AZD-6738) | NCT03740893 (Ⅱ) | Monotherapy; neoadjuvant and adjuvant |
NCT04090567 (Ⅱ) | Combination with olaparib | |||
NCT03182634 (Ⅱ) | Combination with olaparib | |||
NCT04704661 (Ⅰ) | Combination with DS-8201a | |||
NCT03330847 (Ⅱ) | Combination with olaparib | |||
CHEK1 | Downstream effector kinase of ATR | Prexasertib (LY2606368) | NCT02203513 (Ⅱ) | Monotherapy |
NCT04032080 (Ⅱ) | Combination with DNA-PK inhibitor | |||
NCT02124148 (Ⅰ) | Combination with chemotherapy/targeted therapy | |||
NCT03495323 (Ⅰ) | Combination with PD-L1 inhibitor | |||
WEE1 | Checkpoint kinase negatively regulates entry into mitosis | Adavosertib (AZD-1775) | NCT03330847 (Ⅱ) | Combination with olaparib |
NCT03012477 (Ⅱ) | Combination with chemotherapy | |||
NCT02482311 (Ⅰ) | Monotherapy | |||
NCT02465060 (Ⅱ) | Monotherapy |
Tab. 2
The main clinical trials investigating DDR-targeted agents for the treatment of TNBC"
Agent | Study (phase) | Regimen | Clinical setting |
---|---|---|---|
PARP inhibitors | |||
Olaparib | PETREMAC NCT02624973 (Ⅱ) | Monotherapy | Neoadjuvant treatment for operable TNBC |
NCT02484404 (Ⅰ/Ⅱ) | Combination with PD-L1 inhibitor | Advanced/recurrent TNBC | |
NCT02498613 (Ⅱ) | Combination with VEGFR inhibitor | Advanced/metastatic TNBC | |
DORA NCT03167619 (Ⅱ) | Combination with PD-L1 inhibitor | Advanced/metastatic TNBC | |
Veliparib | NCT01306032 (Ⅱ) | Combination with chemotherapy | Metastatic TNBC |
BrighTNess NCT02032277 (Ⅲ) | Combination with chemotherapy | Neoadjuvant treatment for operable TNBC | |
Niraparib | KEYNOTE-162 NCT02657889 (Ⅱ) | Combination with PD-1 inhibitor | Advanced/metastatic TNBC |
Talazoparib | NCT03901469 (Ⅱ) | Combination with BET inhibitor | Advanced/metastatic TNBC |
ATR inhibitor | |||
Ceralasertib (AZD-6738) | NCT03740893 (Ⅱ) | Monotherapy | Neoadjuvant and adjuvant treatment for TNBC |
NCT03330847 (Ⅱ) | Combination with olaparib | Metastatic TNBC | |
CHEK1 inhibitor | |||
Prexasertib (LY2606368)+LY3023414 | NCT04032080 (Ⅱ) | Combination with DNA-PK inhibitor | Metastatic TNBC |
NCT02203513 (Ⅱ) | Monotherapy | Advanced TNBC | |
WEE1 inhibitor | |||
Adavosertib (AZD-1775) | NCT03012477 (Ⅱ) | Combination with chemotherapy | Metastatic TNBC |
NCT02482311 (Ⅰ) | Monotherapy | Advanced/metastatic TNBC |
[1] |
BRAY F, FERLAY J, SOERJOMATARAM I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6): 394-424.
doi: 10.3322/caac.v68.6 |
[2] |
JIANG Y Z, MA D, SUO C, et al. Genomic and transcriptomic landscape of triple-negative breast cancers: subtypes and treatment strategies[J]. Cancer Cell, 2019, 35(3): 428-440. e5.
doi: 10.1016/j.ccell.2019.02.001 |
[3] |
BURSTEIN M D, TSIMELZON A, POAGE G M, et al. Comprehensive genomic analysis identifies novel subtypes and targets of triple-negative breast cancer[J]. Clin Cancer Res, 2015, 21(7): 1688-1698.
doi: 10.1158/1078-0432.CCR-14-0432 |
[4] |
LEHMANN B D, BAUER J A, CHEN X, et al. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies[J]. J Clin Invest, 2011, 121(7): 2750-2767.
doi: 10.1172/JCI45014 |
[5] |
KALIMUTHO M, PARSONS K, MITTAL D, et al. Targeted therapies for triple-negative breast cancer: combating a stubborn disease[J]. Trends Pharmacol Sci, 2015, 36(12): 822-846.
doi: 10.1016/j.tips.2015.08.009 |
[6] |
Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours[J]. Nature, 2012, 490(7418): 61-70.
doi: 10.1038/nature11412 |
[7] |
STAAF J, GLODZIK D, BOSCH A, et al. Whole-genome sequencing of triple-negative breast cancers in a population-based clinical study[J]. Nat Med, 2019, 25(10): 1526-1533.
doi: 10.1038/s41591-019-0582-4 |
[8] |
HANAHAN D, WEINBERG R A. Hallmarks of cancer: the next generation[J]. Cell, 2011, 144(5): 646-674.
doi: 10.1016/j.cell.2011.02.013 |
[9] |
KLINAKIS A, KARAGIANNIS D, RAMPIAS T. Targeting DNA repair in cancer: current state and novel approaches[J]. Cell Mol Life Sci, 2020, 77(4): 677-703.
doi: 10.1007/s00018-019-03299-8 |
[10] |
PEARL L H, SCHIERZ A C, WARD S E, et al. Therapeutic opportunities within the DNA damage response[J]. Nat Rev Cancer, 2015, 15(3): 166-180.
doi: 10.1038/nrc3891 |
[11] |
FRIEDBERG E C. A brief history of the DNA repair field[J]. Cell Res, 2008, 18(1): 3-7.
doi: 10.1038/cr.2007.113 |
[12] | GOURLEY C, BALMAÑA J, LEDERMANN J A, et al. Moving from poly (ADP-ribose) polymerase inhibition to targeting DNA repair and DNA damage response in cancer therapy[J]. J Clin Oncol, 2019, 37(25): 2257-2269. |
[13] |
CHARTRON E, THEILLET C, GUIU S, et al. Targeting homologous repair deficiency in breast and ovarian cancers: biological pathways, preclinical and clinical data[J]. Crit Rev Oncol Hematol, 2019, 133: 58-73.
doi: 10.1016/j.critrevonc.2018.10.012 |
[14] |
LUCCHESI J C. Synthetic lethality and semi-lethality among functionally related mutants of Drosophila melanfgaster[J]. Genetics, 1968, 59(1): 37-44.
doi: 10.1093/genetics/59.1.37 |
[15] |
DOBZHANSKY T. Genetics of natural populations; recombination and variability in populations of drosophila pseudoobscura[J]. Genetics, 1946, 31: 269-290.
pmid: 20985721 |
[16] |
PATEL A G, SARKARIA J N, KAUFMANN S H. Nonhomologous end joining drives poly (ADP-ribose) polymerase (PARP) inhibitor lethality in homologous recombination-deficient cells[J]. Proc Natl Acad Sci USA, 2011, 108(8): 3406-3411.
doi: 10.1073/pnas.1013715108 |
[17] |
WILLIAMSON C T, KUBOTA E, HAMILL J D, et al. Enhanced cytotoxicity of PARP inhibition in mantle cell lymphoma harbouring mutations in both ATM and p53[J]. EMBO Mol Med, 2012, 4(6): 515-527.
doi: 10.1002/emmm.v4.6 |
[18] |
CECCALDI R, LIU J C, AMUNUGAMA R, et al. Homologous-recombination-deficient tumours are dependent on Polθ-mediated repair[J]. Nature, 2015, 518(7538): 258-262.
doi: 10.1038/nature14184 |
[19] |
MURAI J, HUANG S Y, DAS B B, et al. Trapping of PARP1 and PARP2 by clinical PARP inhibitors[J]. Cancer Res, 2012, 72(21): 5588-5599.
doi: 10.1158/0008-5472.CAN-12-2753 |
[20] |
MURAI J, ZHANG Y P, MORRIS J, et al. Rationale for poly (ADP-ribose) polymerase (PARP) inhibitors in combination therapy with camptothecins or temozolomide based on PARP trapping versus catalytic inhibition[J]. J Pharmacol Exp Ther, 2014, 349(3): 408-416.
doi: 10.1124/jpet.113.210146 |
[21] |
KIM C, WANG X D, YU Y H. PARP1 inhibitors trigger innate immunity via PARP1 trapping-induced DNA damage response[J]. Elife, 2020, 9: e60637.
doi: 10.7554/eLife.60637 |
[22] |
BAKR A, OING C, KÖCHER S, et al. Involvement of ATM in homologous recombination after end resection and RAD51 nucleofilament formation[J]. Nucleic Acids Res, 2015, 43(6): 3154-3166.
doi: 10.1093/nar/gkv160 |
[23] | SALDIVAR J C, CORTEZ D, CIMPRICH K A. The essential kinase ATR: ensuring faithful duplication of a challenging genome[J]. Nat Rev Mol Cell Biol, 2017, 18(10): 622-636. |
[24] |
GHELLI LUSERNA DI RORÀ A, CERCHIONE C, MARTINELLI G, et al. A WEE1 family business: regulation of mitosis, cancer progression, and therapeutic target[J]. J Hematol Oncol, 2020, 13(1): 126.
doi: 10.1186/s13045-020-00959-2 |
[25] |
YUE X Q, BAI C J, XIE D F, et al. DNA-PKcs: a multi-faceted player in DNA damage response[J]. Front Genet, 2020, 11: 607428.
doi: 10.3389/fgene.2020.607428 |
[26] |
WANG Z, SONG Y D, LI S B, et al. DNA polymerase θ (POLQ) is important for repair of DNA double-strand breaks caused by fork collapse[J]. J Biol Chem, 2019, 294(11): 3909-3919.
doi: 10.1074/jbc.RA118.005188 |
[27] |
ROBSON M, IM S A, SENKUS E, et al. Olaparib for metastatic breast cancer in patients with a germline BRCA mutation[J]. N Engl J Med, 2017, 377(6): 523-533.
doi: 10.1056/NEJMoa1706450 |
[28] |
ROBSON M E, TUNG N, CONTE P, et al. OlympiAD final overall survival and tolerability results: olaparib versus chemotherapy treatment of physician’s choice in patients with a germline BRCA mutation and HER2-negative metastatic breast cancer[J]. Ann Oncol, 2019, 30(4): 558-566.
doi: 10.1093/annonc/mdz012 |
[29] |
LITTON J K, RUGO H S, ETTL J, et al. Talazoparib in patients with advanced breast cancer and a germline BRCA mutation[J]. N Engl J Med, 2018, 379(8): 753-763.
doi: 10.1056/NEJMoa1802905 |
[30] |
TUNG N M, ROBSON M E, VENTZ S, et al. TBCRC 048: a phase Ⅱ study of olaparib monotherapy in metastatic breast cancer patients with germline or somatic mutations in DNA damage response (DDR) pathway genes (olaparib expanded)[J]. J Clin Oncol, 2020, 38(15_suppl): 1002.
doi: 10.1200/JCO.2020.38.15_suppl.1002 |
[31] |
FASCHING P A, LINK T, HAUKE J, et al. Neoadjuvant paclitaxel/olaparib in comparison to paclitaxel/carboplatinum in patients with HER2-negative breast cancer and homologous recombination deficiency (GeparOLA study)[J]. Ann Oncol, 2021, 32(1): 49-57.
doi: 10.1016/j.annonc.2020.10.471 |
[32] |
LOIBL S, O'SHAUGHNESSY J, UNTCH M, et al. Addition of the PARP inhibitor veliparib plus carboplatin or carboplatin alone to standard neoadjuvant chemotherapy in triple-negative breast cancer (BrighTNess): a randomised, phase 3 trial[J]. Lancet Oncol, 2018, 19(4): 497-509.
doi: 10.1016/S1470-2045(18)30111-6 |
[33] |
EIKESDAL H P, YNDESTAD S, ELZAWAHRY A, et al. Olaparib monotherapy as primary treatment in unselected triple negative breast cancer[J]. Ann Oncol, 2021, 32(2): 240-249.
doi: 10.1016/j.annonc.2020.11.009 |
[34] | GATTI-MAYS M E, KARZAI F H, SOLTANI S N, et al. A phase Ⅱ single arm pilot study of the CHK1 inhibitor prexasertib (LY2606368) in BRCA wild-type, advanced triple-negative breast cancer[J]. Oncologist, 2020, 25(12): e1013-e1824. |
[35] |
MATEO J, LORD C J, SERRA V, et al. A decade of clinical development of PARP inhibitors in perspective[J]. Ann Oncol, 2019, 30(9): 1437-1447.
doi: 10.1093/annonc/mdz192 |
[36] |
FEDERICI G, SODDU S. Variants of uncertain significance in the era of high-throughput genome sequencing: a lesson from breast and ovary cancers[J]. J Exp Clin Cancer Res, 2020, 39(1): 46.
doi: 10.1186/s13046-020-01554-6 |
[37] | BORG A, HAILE R W, MALONE K E, et al. Characterization of BRCA1 and BRCA2 deleterious mutations and variants of unknown clinical significance in unilateral and bilateral breast cancer: the WECARE study[J]. Hum Mutat, 2010, 31(3): E1200-E1240. |
[38] |
MILLOT G A, CARVALHO M A, CAPUTO S M, et al. A guide for functional analysis of BRCA1 variants of uncertain significance[J]. Hum Mutat, 2012, 33(11): 1526-1537.
doi: 10.1002/humu.v33.11 |
[39] |
TOLAND A E, ANDREASSEN P R. DNA repair-related functional assays for the classification of BRCA1 and BRCA2 variants: a critical review and needs assessment[J]. J Med Genet, 2017, 54(11): 721-731.
doi: 10.1136/jmedgenet-2017-104707 |
[40] | ADZHUBEI I A, SCHMIDT S, PESHKIN L, et al. A method and server for predicting damaging missense mutations[J]. Nat Methods, 2010, 7(4): 248-249. |
[41] |
NG P C, HENIKOFF S. SIFT: predicting amino acid changes that affect protein function[J]. Nucleic Acids Res, 2003, 31(13): 3812-3814.
doi: 10.1093/nar/gkg509 |
[42] |
FINDLAY G M, DAZA R M, MARTIN B, et al. Accurate classification of BRCA1 variants with saturation genome editing[J]. Nature, 2018, 562(7726): 217-222.
doi: 10.1038/s41586-018-0461-z |
[1] | XU Rui, WANG Zehao, WU Jiong. Advances in the role of tumor-associated neutrophils in the development of breast cancer [J]. China Oncology, 2024, 34(9): 881-889. |
[2] | CAO Xiaoshan, YANG Beibei, CONG Binbin, LIU Hong. The progress of treatment for brain metastases of triple-negative breast cancer [J]. China Oncology, 2024, 34(8): 777-784. |
[3] | Cancer Assessment Society of China Anti-Cancer Association, Cancer Pain Society of Fujian Anti-Cancer Association. Chinese expert consensus on whole-process management of oxaliplatin-induced hypersensitivity reactions (2024 edition) [J]. China Oncology, 2024, 34(8): 785-805. |
[4] | ZHANG Jian. Clinical consideration of two key questions in assessing menopausal status of female breast cancer patients [J]. China Oncology, 2024, 34(7): 619-627. |
[5] | JIANG Dan, SONG Guoqing, WANG Xiaodan. Study on the mechanism of mitochondrial dysfunction and CPT1A/ERK signal transduction pathway regulating malignant behavior in breast cancer [J]. China Oncology, 2024, 34(7): 650-658. |
[6] | LIU Shuai, ZHANG Kai, ZHANG Xiaoqing, LUAN Wei. An exploratory study on the perioperative treatment of locally advanced gastric cancer with combination of penpulimab, anlotinib and chemotherapy [J]. China Oncology, 2024, 34(7): 659-668. |
[7] | DONG Jianqiao, LI Kunyan, LI Jing, WANG Bin, WANG Yanhong, JIA Hongyan. A study on mechanism of SIRT3 inducing endocrine drug resistance in breast cancer via deacetylating YME1L1 [J]. China Oncology, 2024, 34(6): 537-547. |
[8] | HAO Xian, HUANG Jianjun, YANG Wenxiu, LIU Jinting, ZHANG Junhong, LUO Yubei, LI Qing, WANG Dahong, GAO Yuwei, TAN Fuyun, BO Li, ZHENG Yu, WANG Rong, FENG Jianglong, LI Jing, ZHAO Chunhua, DOU Xiaowei. Establishment of primary breast cancer cell line as new model for drug screening and basic research [J]. China Oncology, 2024, 34(6): 561-570. |
[9] | CHEN Hong, CAO Zhiyun. Recent progress in the construction and application of patient-derived pancreatic cancer organoid models [J]. China Oncology, 2024, 34(6): 590-597. |
[10] | Urologic Chinese Oncology Group. Expert consensus on early diagnosis and treatment of bladder cancer (2024 edition) [J]. China Oncology, 2024, 34(6): 607-618. |
[11] | Professional Committee on Gastric Cancer of Shanghai Anticancer Association , Professional Committee on Gastrointestinal Cancer of China Association for Promotion of Health Science and Technology . Chinese expert consensus on clinical practice of locally advanced gastric cancer invading adjacent organs (2024 edition) [J]. China Oncology, 2024, 34(5): 517-526. |
[12] | FENG Zheng, GUO Qinhao, ZHU Jun, WU Xiaohua, WEN Hao. Progress in treatment of gynecological cancer in 2023 [J]. China Oncology, 2024, 34(4): 340-360. |
[13] | XU Yonghu, XU Dazhi. Progress and prospects of gastric cancer treatment in the 21st century [J]. China Oncology, 2024, 34(3): 239-249. |
[14] | WANG Xuefei, ZHOU Peng, TANG Zhaoqing. New progress and development trend of surgical treatment for gastric cancer [J]. China Oncology, 2024, 34(3): 250-258. |
[15] | Committee of Breast Cancer Society, China Anti-Cancer Association. Expert consensus on clinical applications of ovarian function suppression for Chinese women with early breast cancer (2024 edition) [J]. China Oncology, 2024, 34(3): 316-333. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
沪ICP备12009617
Powered by Beijing Magtech Co. Ltd