China Oncology ›› 2024, Vol. 34 ›› Issue (2): 191-200.doi: 10.19401/j.cnki.1007-3639.2024.02.007
• Article • Previous Articles Next Articles
LIU Zhiyu1,2(), XU Dong1,2, CHEN Xihao1,2, LI Jipeng2(
)
Received:
2023-03-15
Revised:
2023-12-15
Online:
2024-02-29
Published:
2024-03-14
Contact:
LI Jipeng
Share article
CLC Number:
LIU Zhiyu, XU Dong, CHEN Xihao, LI Jipeng. Influencing factors and establishment of a prediction model for the tumor regression after neoadjuvant chemoradiotherapy in locally advanced rectal cancer[J]. China Oncology, 2024, 34(2): 191-200.
Tab. 1
Clinical baseline characteristics of patients with LARC [n (%)]"
Characteristic | Good tumor regression (n=98) | Bad tumor regression (n=60) | P value |
---|---|---|---|
Gender | 0.183 9 | ||
Female | 34 (34.69) | 14 (23.33) | |
Male | 64 (65.31) | 46 (76.67) | |
Age/year | 0.066 3 | ||
<71.5 | 93 (94.90) | 51 (85.00) | |
≥71.5 | 5 (5.10) | 9 (15.00) | |
Albumin/(g·L-1) | 0.065 7 | ||
<38.1 | 2 (2.04) | 6 (10.00) | |
≥38.1 | 96 (97.96) | 54 (90.00) | |
PNI | 0.032 4 | ||
<46.175 | 6 (6.12) | 11 (18.33) | |
≥46.175 | 92 (93.88) | 49 (81.67) | |
Fibrinogen/(g·L-1) | 0.003 0 | ||
<4.13 | 81 (82.65) | 36 (60.00) | |
≥4.13 | 17 (17.35) | 24 (40.00) | |
D-dimer/(ng·mL-1) | 0.044 7 | ||
<275 | 50 (51.02) | 20 (33.33) | |
≥275 | 48 (48.98) | 40 (66.67) | |
FAR | 0.023 0 | ||
<0.095 | 78 (79.59) | 37 (61.67) | |
≥0.095 | 20 (20.41) | 23 (38.33) | |
CEA/(ng·mL-1) | 0.004 8 | ||
<2.11 | 23 (23.47) | 3 (5.00) | |
≥2.11 | 75 (76.53) | 57 (95.00) | |
CA19-9/(U·mL-1) | 0.145 5 | ||
<8.365 | 35 (35.71) | 14 (23.33) | |
≥8.365 | 63 (64.29) | 46 (76.67) | |
CA12-5/(U·mL-1) | 0.429 0 | ||
<14.765 | 77 (78.57) | 51 (85.00) | |
≥14.765 | 21 (21.43) | 9 (15.00) | |
FOBT | 0.268 9 | ||
Negative | 19 (19.39) | 17 (28.33) | |
Positive | 79 (80.61) | 43 (71.67) | |
MRF | 0.633 5 | ||
Negative | 41 (41.84) | 22 (36.67) | |
Positive | 57 (58.16) | 38 (63.33) | |
EMVI | 0.006 2 | ||
Negative | 67 (68.37) | 27 (45.00) | |
Positive | 31 (31.63) | 33 (55.00) | |
Time to surgery after nCRT/week M (P25, P75) | 8.000 (6.000, 8.000) | 6.500 (6.000, 8.000) | 0.016 4 |
Tumor diameter/cm | <0.000 1 | ||
<4.7 | 55 (56.12) | 12 (20.00) | |
≥4.7 | 43 (43.88) | 48 (80.00) | |
Distance from anal verge/cm | 0.821 9 | ||
>10 | 11 (11.22) | 5 (8.33) | |
5-10 | 47 (47.96) | 29 (48.33) | |
<5 | 40 (40.82) | 26 (43.33) | |
Tumor type | 0.261 5 | ||
Adenocarcinoma | 95 (96.94) | 55 (91.67) | |
Adenosine squamous carcinoma | 2 (2.04) | 2 (3.33) | |
Mucous membrane cancer | 1 (1.02) | 3 (5.00) | |
Degree of differentiation | 0.255 3 | ||
Well differentiated | 16 (16.33) | 7 (11.67) | |
Moderately differentiated | 63 (64.29) | 46 (76.67) | |
Poorly differentiated | 19 (19.39) | 7 (11.67) | |
T stage | 0.098 8 | ||
T2 | 11 (11.22) | 8 (13.33) | |
T3 | 76 (77.55) | 38 (63.33) | |
T4 | 11 (11.22) | 14 (23.33) | |
N stage | 0.778 2 | ||
N0 | 7 (7.14) | 6 (10.00) | |
N1 | 53 (54.08) | 30 (50.00) | |
N2 | 38 (38.78) | 24 (40.00) |
Tab. 2
nCRT and surgery in patients with LARC"
Therapeutic effect | pCR | Stage Ⅰ | Stage Ⅱ | Stage Ⅲ | Stage Ⅳ | Down stage rate/% | pCR rate/% | R0 resection rate/% |
---|---|---|---|---|---|---|---|---|
Good tumor regression (n = 98) | 62.2 | 15.3 | 99.0 | |||||
Pre-nCRT | 9 | 89 | ||||||
After-nCRT | 15 | 26 | 25 | 32 | ||||
Bad tumor regression (n = 60) | 48.3 | 1.6 | 96.7 | |||||
Pre-nCRT | 7 | 53 | ||||||
After-nCRT | 1 | 13 | 16 | 27 | 3 |
Tab. 3
Multivariable logistic analysis of tumor regression after nCRT in patients with LARC"
Characteristic | Estimate | SE | OR | 95% CI | P value |
---|---|---|---|---|---|
Fibrinogen≥4.13 g/L | 2.695 | 1.787 | 14.700 | 0.825-901.624 | 0.128 |
Time to surgery after nCRT/week | -0.297 | 0.108 | 0.743 | 0.590-0.908 | 0.006 |
CEA≥2.11 ng/mL | 2.281 | 0.792 | 9.873 | 2.400-57.230 | 0.004 |
Albumin<38.1 g/L | -0.415 | 1.394 | 0.657 | 0.044-11.745 | 0.766 |
PNI<46.175 | -1.942 | 0.925 | 6.996 | 1.152-47.615 | 0.035 |
D-dimer≥275 ng/mL | 1.241 | 0.496 | 3.487 | 1.352-9.583 | 0.010 |
EMVI positive | 0.990 | 0.446 | 2.683 | 1.137-6.615 | 0.026 |
Tumor diameter<4.7 cm | -3.022 | 0.696 | 0.048 | 0.011-0.166 | <0.001 |
FAR≥0.095 | -0.732 | 1.810 | 0.488 | 0.009-11.359 | 0.686 |
[1] |
SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249.
doi: 10.3322/caac.v71.3 |
[2] | National Health Commission of the People’s Republic of China, Chinese Society of Oncology. Chinese protocol of diagnosis and treatment of colorectal cancer (2023 edition)[J]. Chin J Surg, 2023, 61(8): 617-644. |
[3] |
KENNEDY A, COHN M, COLDWELL D M, et al. Erratum to updated survival outcomes and analysis of long-term survivors from the MORE study on safety and efficacy of radioembolization in patients with unresectable colorectal cancer liver metastases[J]. J Gastrointest Oncol, 2018, 9(2): E13-E14.
doi: 10.21037/jgo |
[4] |
BENSON A B, VENOOK A P, AL-HAWARY M M, et al. Rectal cancer, version 2.2022, NCCN clinical practice guidelines in oncology[J]. J Natl Compr Canc Netw, 2022, 20(10): 1139-1167.
doi: 10.6004/jnccn.2022.0051 |
[5] |
GÉRARD J P, CONROY T, BONNETAIN F, et al. Preoperative radiotherapy with or without concurrent fluorouracil and leucovorin in T3-4 rectal cancers: results of FFCD 9203[J]. J Clin Oncol, 2006, 24(28): 4620-4625.
doi: 10.1200/JCO.2006.06.7629 |
[6] |
BOSSET J F, COLLETTE L, CALAIS G, et al. Chemotherapy with preoperative radiotherapy in rectal cancer[J]. N Engl J Med, 2006, 355(11): 1114-1123.
doi: 10.1056/NEJMoa060829 |
[7] |
MAAS M, NELEMANS P J, VALENTINI V, et al. Long-term outcome in patients with a pathological complete response after chemoradiation for rectal cancer: a pooled analysis of individual patient data[J]. Lancet Oncol, 2010, 11(9): 835-844.
doi: 10.1016/S1470-2045(10)70172-8 pmid: 20692872 |
[8] |
AGARWAL A, CHANG G J, HU C Y, et al. Quantified pathologic response assessed as residual tumor burden is a predictor of recurrence-free survival in patients with rectal cancer who undergo resection after neoadjuvant chemoradiotherapy[J]. Cancer, 2013, 119(24): 4231-4241.
doi: 10.1002/cncr.28331 pmid: 24089344 |
[9] |
MCCOY M J, HEMMINGS C, ANYAEGBU C C, et al. Tumour-infiltrating regulatory T cell density before neoadjuvant chemoradiotherapy for rectal cancer does not predict treatment response[J]. Oncotarget, 2017, 8(12): 19803-19813.
doi: 10.18632/oncotarget.15048 pmid: 28177891 |
[10] |
YI Y X, SHEN L J, SHI W, et al. Gut microbiome components predict response to neoadjuvant chemoradiotherapy in patients with locally advanced rectal cancer: a prospective, longitudinal study[J]. Clin Cancer Res, 2021, 27(5): 1329-1340.
doi: 10.1158/1078-0432.CCR-20-3445 pmid: 33298472 |
[11] |
EISENHAUER E A, THERASSE P, BOGAERTS J, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1)[J]. Eur J Cancer, 2009, 45(2): 228-247.
doi: 10.1016/j.ejca.2008.10.026 pmid: 19097774 |
[12] |
PARK I J, YOU Y N, AGARWAL A, et al. Neoadjuvant treatment response as an early response indicator for patients with rectal cancer[J]. J Clin Oncol, 2012, 30(15): 1770-1776.
doi: 10.1200/JCO.2011.39.7901 pmid: 22493423 |
[13] | ZENG W G, LIANG J W, WANG Z, et al. Clinical parameters predicting pathologic complete response following neoadjuvant chemoradiotherapy for rectal cancer[J]. Chin J Cancer, 2015, 34(10): 468-474. |
[14] |
BUGG W G, ANDREOU A K, BISWAS D, et al. The prognostic significance of MRI-detected extramural venous invasion in rectal carcinoma[J]. Clin Radiol, 2014, 69(6): 619-623.
doi: 10.1016/j.crad.2014.01.010 pmid: 24581964 |
[15] |
MCCAWLEY N, CLANCY C, O’NEILL B D, et al. Mucinous rectal adenocarcinoma is associated with a poor response to neoadjuvant chemoradiotherapy: a systematic review and meta-analysis[J]. Dis Colon Rectum, 2016, 59(12): 1200-1208.
pmid: 27824706 |
[16] |
SONG M, LI S, WANG H Z, et al. MRI radiomics independent of clinical baseline characteristics and neoadjuvant treatment modalities predicts response to neoadjuvant therapy in rectal cancer[J]. Br J Cancer, 2022, 127(2): 249-257.
doi: 10.1038/s41416-022-01786-7 |
[17] | FENG L L, LIU Z Y, LI C F, et al. Development and validation of a radiopathomics model to predict pathological complete response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer: a multicentre observational study[J]. Lancet Digit Health, 2022, 4(1): e8-e17. |
[18] |
BEDRIKOVETSKI S, TRAEGER L, VATHER R, et al. Clinical and biochemical predictors of tumor response after neoadjuvant therapy in rectal cancer[J]. Asia Pac J Clin Oncol, 2023, 19(3): 365-373.
doi: 10.1111/ajco.v19.3 |
[19] |
GAMBACORTA M A, MASCIOCCHI C, CHILOIRO G, et al. Timing to achieve the highest rate of pCR after preoperative radiochemotherapy in rectal cancer: a pooled analysis of 3085 patients from 7 randomized trials[J]. Radiother Oncol, 2021, 154: 154-160.
doi: 10.1016/j.radonc.2020.09.026 pmid: 32966845 |
[20] |
HUANG W H, WANG S G, ZHANG H, et al. Prognostic significance of combined fibrinogen concentration and neutrophil-to-lymphocyte ratio in patients with resectable non-small cell lung cancer[J]. Cancer Biol Med, 2018, 15(1): 88-96.
doi: 10.20892/j.issn.2095-3941.2017.0124 pmid: 29545972 |
[21] |
BEER J H, HAEBERLI A, VOGT A, et al. Coagulation markers predict survival in cancer patients[J]. Thromb Haemost, 2002, 88(5): 745-749.
doi: 10.1055/s-0037-1613296 |
[22] |
SHIBUTANI M, KASHIWAGI S, FUKUOKA T, et al. The significance of the D-dimer level as a prognostic marker for survival and treatment outcomes in patients with stage Ⅳ colorectal cancer[J]. In Vivo, 2023, 37(1): 440-444.
doi: 10.21873/invivo.13097 |
[23] |
MUSCARITOLI M, ARENDS J, BACHMANN P, et al. ESPEN practical guideline: clinical nutrition in cancer[J]. Clin Nutr, 2021, 40(5): 2898-2913.
doi: 10.1016/j.clnu.2021.02.005 pmid: 33946039 |
[24] |
XIE H L, WEI L S, YUAN G H, et al. Prognostic value of prognostic nutritional index in patients with colorectal cancer undergoing surgical treatment[J]. Front Nutr, 2022, 9: 794489.
doi: 10.3389/fnut.2022.794489 |
[25] | HU H B, KANG L, ZHANG J W, et al. Neoadjuvant PD-1 blockade with toripalimab, with or without celecoxib, in mismatch repair-deficient or microsatellite instability-high, locally advanced, colorectal cancer (PICC): a single-centre, parallel-group, non-comparative, randomised, phase 2 trial[J]. Lancet Gastroenterol Hepatol, 2022, 7(1): 38-48. |
[26] |
SAUER R, BECKER H, HOHENBERGER W, et al. Preoperative versus postoperative chemoradiotherapy for rectal cancer[J]. N Engl J Med, 2004, 351(17): 1731-1740.
doi: 10.1056/NEJMoa040694 |
[27] |
MOMMA T, OKAYAMA H, KANKE Y, et al. Validation of gene expression-based predictive biomarkers for response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer[J]. Cancers (Basel), 2021, 13(18): 4642.
doi: 10.3390/cancers13184642 |
[28] |
GARCIA-AGUILAR J, CHOW O S, SMITH D D, et al. Effect of adding mFOLFOX6 after neoadjuvant chemoradiation in locally advanced rectal cancer: a multicentre, phase 2 trial[J]. Lancet Oncol, 2015, 16(8): 957-966.
doi: 10.1016/S1470-2045(15)00004-2 |
[29] |
CERCEK A, ROXBURGH C S D, STROMBOM P, et al. Adoption of total neoadjuvant therapy for locally advanced rectal cancer[J]. JAMA Oncol, 2018, 4(6): e180071.
doi: 10.1001/jamaoncol.2018.0071 |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
沪ICP备12009617
Powered by Beijing Magtech Co. Ltd