China Oncology ›› 2024, Vol. 34 ›› Issue (9): 807-813.doi: 10.19401/j.cnki.1007-3639.2024.09.001
• Specialists' Commentory • Previous Articles Next Articles
TAN Hong1,2(), LIN Shenggeng1,2, XIONG Yi1,2(
)
Received:
2024-08-07
Revised:
2024-09-13
Online:
2024-09-30
Published:
2024-10-11
Contact:
XIONG Yi
Share article
CLC Number:
TAN Hong, LIN Shenggeng, XIONG Yi. Current status and challenges of artificial intelligence-enabled prediction of synergistic cancer drug combinations[J]. China Oncology, 2024, 34(9): 807-813.
[1] | BRAY F, LAVERSANNE M, SUNG H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2024, 74(3): 229-263. |
[2] |
MEIJER C, MULDER N H, TIMMER-BOSSCHA H, et al. Relationship of cellular glutathione to the cytotoxicity and resistance of seven platinum compounds[J]. Cancer Res, 1992, 52(24): 6885-6889.
pmid: 1458477 |
[3] |
HEERBOTH S, HOUSMAN G, LEARY M, et al. EMT and tumor metastasis[J]. Clin Transl Med, 2015, 4: 6.
doi: 10.1186/s40169-015-0048-3 pmid: 25852822 |
[4] | ABOLHODA A, WILSON A E, ROSS H, et al. Rapid activation of MDR1 gene expression in human metastatic sarcoma after in vivo exposure to doxorubicin[J]. Clin Cancer Res, 1999, 5(11): 3352-3356. |
[5] |
THOMAS J, WANG L H, CLARK R E, et al. Active transport of imatinib into and out of cells: implications for drug resistance[J]. Blood, 2004, 104(12): 3739-3745.
doi: 10.1182/blood-2003-12-4276 pmid: 15315971 |
[6] |
PAO W, MILLER V A, POLITI K A, et al. Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain[J]. PLoS Med, 2005, 2(3): e73.
doi: 10.1371/journal.pmed.0020073 pmid: 15737014 |
[7] | BAO S D, WU Q L, MCLENDON R E, et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response[J]. Nature, 2006, 444(7120): 756-760. |
[8] | SETHI T, RINTOUL R C, MOORE S M, et al. Extracellular matrix proteins protect small cell lung cancer cells against apoptosis: a mechanism for small cell lung cancer growth and drug resistance in vivo[J]. Nat Med, 1999, 5(6): 662-668. |
[9] |
BYLER S, GOLDGAR S, HEERBOTH S, et al. Genetic and epigenetic aspects of breast cancer progression and therapy[J]. Anticancer Res, 2014, 34(3): 1071-1077.
pmid: 24596345 |
[10] |
BYLER S, SARKAR S. Do epigenetic drug treatments hold the key to killing cancer progenitor cells?[J]. Epigenomics, 2014, 6(2): 161-165.
doi: 10.2217/epi.14.4 pmid: 24811783 |
[11] |
MADANI TONEKABONI S A, SOLTAN GHORAIE L, MANEM V S K, et al. Predictive approaches for drug combination discovery in cancer[J]. Brief Bioinform, 2018, 19(2): 263-276.
doi: 10.1093/bib/bbw104 pmid: 27881431 |
[12] | CHOU T C. Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies[J]. Pharmacol Rev, 2006, 58(3): 621-681. |
[13] | SWAIN S M, BASELGA J, KIM S B, et al. Pertuzumab, trastuzumab, and docetaxel in HER2-positive metastatic breast cancer[J]. N Engl J Med, 2015, 372(8): 724-734. |
[14] |
ROTH A D, MAIBACH R, MARTINELLI G, et al. Docetaxel (Taxotere)-cisplatin (TC): an effective drug combination in gastric carcinoma. Swiss Group for Clinical Cancer Research (SAKK), and the European Institute of Oncology (EIO)[J]. Ann Oncol, 2000, 11(3): 301-306.
doi: 10.1023/a:1008342013224 pmid: 10811496 |
[15] | GILLET J P, VARMA S, GOTTESMAN M M. The clinical relevance of cancer cell lines[J]. J Natl Cancer Inst, 2013, 105(7): 452-458. |
[16] | CHOI S Y, LIN D, GOUT P W, et al. Lessons from patient-derived xenografts for better in vitro modeling of human cancer[J]. Adv Drug Deliv Rev, 2014, 79/80: 222-237. |
[17] |
LEHÁR J, KRUEGER A S, AVERY W, et al. Synergistic drug combinations tend to improve therapeutically relevant selectivity[J]. Nat Biotechnol, 2009, 27(7): 659-666.
doi: 10.1038/nbt.1549 pmid: 19581876 |
[18] |
TAN X, HU L, LUQUETTE L J 3rd, et al. Systematic identification of synergistic drug pairs targeting HIV[J]. Nat Biotechnol, 2012, 30(11): 1125-1130.
doi: 10.1038/nbt.2391 pmid: 23064238 |
[19] | ZHENG S Y, ALDAHDOOH J, SHADBAHR T, et al. DrugComb update: a more comprehensive drug sensitivity data repository and analysis portal[J]. Nucleic Acids Res, 2021, 49(W1): W174-W184. |
[20] | GHANDI M, HUANG F W, JANÉ-VALBUENA J, et al. Next-generation characterization of the cancer cell line encyclopedia[J]. Nature, 2019, 569(7757): 503-508. |
[21] | WISHART D S, FEUNANG Y D, GUO A C, et al. DrugBank 5.0: a major update to the DrugBank database for 2018[J]. Nucleic Acids Res, 2018, 46(D1): D1074-D1082. |
[22] |
YANG K, BAI H J, OUYANG Q, et al. Finding multiple target optimal intervention in disease-related molecular network[J]. Mol Syst Biol, 2008, 4: 228.
doi: 10.1038/msb.2008.60 pmid: 18985027 |
[23] |
SUN X Q, BAO J G, YOU Z H, et al. Modeling of signaling crosstalk-mediated drug resistance and its implications on drug combination[J]. Oncotarget, 2016, 7(39): 63995-64006.
doi: 10.18632/oncotarget.11745 pmid: 27590512 |
[24] |
ZINNER R G, BARRETT B L, POPOVA E, et al. Algorithmic guided screening of drug combinations of arbitrary size for activity against cancer cells[J]. Mol Cancer Ther, 2009, 8(3): 521-532.
doi: 10.1158/1535-7163.MCT-08-0937 pmid: 19276160 |
[25] | WU L L, WEN Y Q, LENG D J, et al. Machine learning methods, databases and tools for drug combination prediction[J]. Brief Bioinform, 2022, 23(1): bbab355. |
[26] |
SIDOROV P, NAULAERTS S, ARIEY-BONNET J, et al. Predicting synergism of cancer drug combinations using NCI-ALMANAC data[J]. Front Chem, 2019, 7: 509.
doi: 10.3389/fchem.2019.00509 pmid: 31380352 |
[27] |
XU Q, XIONG Y, DAI H, et al. PDC-SGB: Prediction of effective drug combinations using a stochastic gradient boosting algorithm[J]. J Theor Biol, 2017, 417: 1-7.
doi: S0022-5193(17)30019-X pmid: 28099868 |
[28] |
HUANG H, ZHANG P, QU X A, et al. Systematic prediction of drug combinations based on clinical side-effects[J]. Sci Rep, 2014, 4: 7160.
doi: 10.1038/srep07160 pmid: 25418113 |
[29] |
PREUER K, LEWIS R P I, HOCHREITER S, et al. DeepSynergy: predicting anti-cancer drug synergy with deep learning[J]. Bioinformatics, 2018, 34(9): 1538-1546.
doi: 10.1093/bioinformatics/btx806 pmid: 29253077 |
[30] | WANG J X, LIU X J, SHEN S Y, et al. DeepDDS: deep graph neural network with attention mechanism to predict synergistic drug combinations[J]. Brief Bioinform, 2022, 23(1): bbab390. |
[31] |
ZHANG T Y, ZHANG L W, PAYNE P R O, et al. Synergistic drug combination prediction by integrating multiomics data in deep learning models[J]. Methods Mol Biol, 2021, 2194: 223-238.
doi: 10.1007/978-1-0716-0849-4_12 pmid: 32926369 |
[32] |
KUENZI B M, PARK J, FONG S H, et al. Predicting drug response and synergy using a deep learning model of human cancer cells[J]. Cancer Cell, 2020, 38(5): 672-684.e6.
doi: 10.1016/j.ccell.2020.09.014 pmid: 33096023 |
[33] |
LI T H, SHETTY S, KAMATH A, et al. CancerGPT for few shot drug pair synergy prediction using large pretrained language models[J]. NPJ Digit Med, 2024, 7(1): 40.
doi: 10.1038/s41746-024-01024-9 pmid: 38374445 |
[34] | KURU H I, TASTAN O, CICEK A E. MatchMaker: a deep learning framework for drug synergy prediction[J]. IEEE/ACM Trans Comput Biol Bioinform, 2022, 19(4): 2334-2344. |
[35] | PAN Y C, REN H T, LAN L, et al. Review of predicting synergistic drug combinations[J]. Life, 2023, 13(9): 1878. |
[36] | LIU X, SONG C Z, LIU S C, et al. Multi-way relation-enhanced hypergraph representation learning for anti-cancer drug synergy prediction[J]. Bioinformatics, 2022, 38(20): 4782-4789. |
[37] | HU J, GAO J, FANG X M, et al. DTSyn: a dual-transformer-based neural network to predict synergistic drug combinations[J]. Brief Bioinform, 2022, 23(5): bbac302. |
[38] | EDWARDS C, NAIK A, KHOT T, et al. SynerGPT: in-context learning for personalized drug synergy prediction and drug design[EB/OL]. (2023-10-24) [2024-08-06]. http://arxiv.org/abs/2307.11694 . |
[39] |
XU Y J, DONG Q, LI F, et al. Identifying subpathway signatures for individualized anticancer drug response by integrating multi-omics data[J]. J Transl Med, 2019, 17(1): 255.
doi: 10.1186/s12967-019-2010-4 pmid: 31387579 |
[40] | HE H H, CHEN G X, CHEN C Y C. 3DGT-DDI: 3D graph and text based neural network for drug-drug interaction prediction[J]. Brief Bioinform, 2022, 23(3): bbac134. |
[41] | WANG X W, ZHU H M, CHEN D Y, et al. A complete graph-based approach with multi-task learning for predicting synergistic drug combinations[J]. Bioinformatics, 2023, 39(6): btad351. |
[42] | ZHANG P, TU S K. MGAE-DC: predicting the synergistic effects of drug combinations through multi-channel graph autoencoders[J]. PLoS Comput Biol, 2023, 19(3): e1010951. |
[43] | PRETO A J, MATOS-FILIPE P, MOURÃO J, et al. SYNPRED: prediction of drug combination effects in cancer using different synergy metrics and ensemble learning[J]. Gigascience, 2022, 11: giac087. |
[44] | WANG Y, WANG J J, LIU Y. Deep learning for predicting synergistic drug combinations: state-of-the-arts and future directions[J]. Clin Transl Discov, 2024, 4(3): e317. |
[45] | LIU S C, WANG H C, LIU W Y, et al. Pre-training molecular graph representation with 3D geometry[EB/OL]. (2022-05-29) [2024-08-06]. 2110.07728. http://arxiv.org/abs/2110.07728 . |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
沪ICP备12009617
Powered by Beijing Magtech Co. Ltd