China Oncology ›› 2022, Vol. 32 ›› Issue (10): 1000-1006.doi: 10.19401/j.cnki.1007-3639.2022.10.008
• Review • Previous Articles Next Articles
CAO Dalong1,2(), YE Dingwei1,2(
)
Received:
2022-06-02
Revised:
2022-10-19
Online:
2022-10-30
Published:
2022-11-29
Share article
CLC Number:
CAO Dalong, YE Dingwei. New trends and future prospects of regulatory cell death in renal carcinoma[J]. China Oncology, 2022, 32(10): 1000-1006.
[1] |
SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA A Cancer J Clin, 2021, 71(3): 209-249.
doi: 10.3322/caac.21660 |
[2] |
BRAY F, FERLAY J, SOERJOMATARAM I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA A Cancer J Clin, 2018, 68(6): 394-424.
doi: 10.3322/caac.21492 |
[3] | ZHENG R S, ZHANG S W, ZENG H M, et al. Cancer incidence and mortality in China, 2016[J]. J Natl Cancer Cent, 2022, 2(1): 1-9. |
[4] |
CHEN W Q, ZHENG R S, BAADE P D, et al. Cancer statistics in China, 2015[J]. CA Cancer J Clin, 2016, 66(2): 115-132.
doi: 10.3322/caac.21338 |
[5] |
COHEN H T, MCGOVERN F J. Renal-cell carcinoma[J]. N Engl J Med, 2005, 353(23): 2477-2490.
doi: 10.1056/NEJMra043172 |
[6] |
POWLES T, PLIMACK E R, SOULIÈRES D, et al. Pembrolizumab plus axitinib versus sunitinib monotherapy as first-line treatment of advanced renal cell carcinoma (KEYNOTE-426): extended follow-up from a randomised, open-label, phase 3 trial[J]. Lancet Oncol, 2020, 21(12): 1563-1573.
doi: 10.1016/S1470-2045(20)30436-8 pmid: 33284113 |
[7] |
MOTZER R J, TANNIR N M, MCDERMOTT D F, et al. Nivolumab plus ipilimumab versus sunitinib in advanced renal-cell carcinoma[J]. N Engl J Med, 2018, 378(14): 1277-1290.
doi: 10.1056/NEJMoa1712126 |
[8] |
FUCHS Y, STELLER H. Programmed cell death in animal development and disease[J]. Cell, 2011, 147(4): 742-758.
doi: 10.1016/j.cell.2011.10.033 pmid: 22078876 |
[9] |
TSVETKOV P, COY S, PETROVA B, et al. Copper induces cell death by targeting lipoylated TCA cycle proteins[J]. Science, 2022, 375(6586): 1254-1261.
doi: 10.1126/science.abf0529 pmid: 35298263 |
[10] |
LI J, CAO F, YIN H L, et al. Ferroptosis: past, present and future[J]. Cell Death Dis, 2020, 11(2): 88.
doi: 10.1038/s41419-020-2298-2 pmid: 32015325 |
[11] | FANG Y, TIAN S W, PAN Y T, et al. Pyroptosis: a new frontier in cancer[J]. Biomedecine Pharmacother, 2020, 121: 109595. |
[12] |
LEVY J M M, TOWERS C G, THORBURN A. Targeting autophagy in cancer[J]. Nat Rev Cancer, 2017, 17(9): 528-542.
doi: 10.1038/nrc.2017.53 pmid: 28751651 |
[13] |
CARNEIRO B A, EL-DEIRY W S. Targeting apoptosis in cancer therapy[J]. Nat Rev Clin Oncol, 2020, 17(7): 395-417.
doi: 10.1038/s41571-020-0341-y pmid: 32203277 |
[14] |
DIXON S J, LEMBERG K M, LAMPRECHT M R, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death[J]. Cell, 2012, 149(5): 1060-1072.
doi: 10.1016/j.cell.2012.03.042 pmid: 22632970 |
[15] |
DOLMA S, LESSNICK S L, HAHN W C, et al. Identification of genotype-selective antitumor agents using synthetic lethal chemical screening in engineered human tumor cells[J]. Cancer Cell, 2003, 3(3): 285-296.
pmid: 12676586 |
[16] |
ZHOU B R, LIU J, KANG R, et al. Ferroptosis is a type of autophagy-dependent cell death[J]. Semin Cancer Biol, 2020, 66: 89-100.
doi: S1044-579X(19)30006-9 pmid: 30880243 |
[17] |
LEI G, ZHUANG L, GAN B Y. Targeting ferroptosis as a vulnerability in cancer[J]. Nat Rev Cancer, 2022, 22(7): 381-396.
doi: 10.1038/s41568-022-00459-0 pmid: 35338310 |
[18] |
YANG W S, SRIRAMARATNAM R, WELSCH M E, et al. Regulation of ferroptotic cancer cell death by GPX4[J]. Cell, 2014, 156(1/2): 317-331.
doi: 10.1016/j.cell.2013.12.010 |
[19] |
MIESS H, DANKWORTH B, GOUW A M, et al. The glutathione redox system is essential to prevent ferroptosis caused by impaired lipid metabolism in clear cell renal cell carcinoma[J]. Oncogene, 2018, 37(40): 5435-5450.
doi: 10.1038/s41388-018-0315-z pmid: 29872221 |
[20] |
YANG W H, DING C K C, SUN T A, et al. The hippo pathway effector TAZ regulates ferroptosis in renal cell carcinoma[J]. Cell Rep, 2019, 28(10): 2501-2508.e4.
doi: 10.1016/j.celrep.2019.07.107 |
[21] |
LEE H, ZANDKARIMI F, ZHANG Y L, et al. Energy-stress-mediated AMPK activation inhibits ferroptosis[J]. Nat Cell Biol, 2020, 22(2): 225-234.
doi: 10.1038/s41556-020-0461-8 pmid: 32029897 |
[22] |
LU Y Q, QIN H X, JIANG B, et al. KLF2 inhibits cancer cell migration and invasion by regulating ferroptosis through GPX4 in clear cell renal cell carcinoma[J]. Cancer Lett, 2021, 522: 1-13.
doi: 10.1016/j.canlet.2021.09.014 pmid: 34520818 |
[23] |
KERINS M J, MILLIGAN J, WOHLSCHLEGEL J A, et al. Fumarate hydratase inactivation in hereditary leiomyomatosis and renal cell cancer is synthetic lethal with ferroptosis induction[J]. Cancer Sci, 2018, 109(9): 2757-2766.
doi: 10.1111/cas.13701 |
[24] |
COOKSON B T, BRENNAN M A. Pro-inflammatory programmed cell death[J]. Trends Microbiol, 2001, 9(3): 113-114.
pmid: 11303500 |
[25] |
LIU X, ZHANG Z B, RUAN J B, et al. Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores[J]. Nature, 2016, 535(7610): 153-158.
doi: 10.1038/nature18629 |
[26] |
SHI J J, GAO W Q, SHAO F. Pyroptosis: gasdermin-mediated programmed necrotic cell death[J]. Trends Biochem Sci, 2017, 42(4): 245-254.
doi: S0968-0004(16)30182-7 pmid: 27932073 |
[27] |
KAYAGAKI N, WONG M T, STOWE I B, et al. Noncanonical inflammasome activation by intracellular LPS independent of TLR4[J]. Science, 2013, 341(6151): 1246-1249.
doi: 10.1126/science.1240248 pmid: 23887873 |
[28] |
LAGRANGE B, BENAOUDIA S, WALLET P, et al. Human caspase-4 detects tetra-acylated LPS and cytosolic Francisella and functions differently from murine caspase-11[J]. Nat Commun, 2018, 9(1): 242.
doi: 10.1038/s41467-017-02682-y pmid: 29339744 |
[29] |
WANG Y P, GAO W Q, SHI X Y, et al. Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin[J]. Nature, 2017, 547(7661): 99-103.
doi: 10.1038/nature22393 |
[30] |
HOU J W, ZHAO R C, XIA W Y, et al. PD-L1-mediated gasdermin C expression switches apoptosis to pyroptosis in cancer cells and facilitates tumour necrosis[J]. Nat Cell Biol, 2020, 22(10): 1264-1275.
doi: 10.1038/s41556-020-0575-z pmid: 32929201 |
[31] |
WEI X, XIE F, ZHOU X X, et al. Role of pyroptosis in inflammation and cancer[J]. Cell Mol Immunol, 2022, 19(9): 971-992.
doi: 10.1038/s41423-022-00905-x pmid: 35970871 |
[32] |
SUN Z L, JING C Y, GUO X D, et al. Comprehensive analysis of the immune infiltrates of pyroptosis in kidney renal clear cell carcinoma[J]. Front Oncol, 2021, 11: 716854.
doi: 10.3389/fonc.2021.716854 |
[33] |
YAO L, LI J N, XU Z J, et al. GSDMs are potential therapeutic targets and prognostic biomarkers in clear cell renal cell carcinoma[J]. Aging, 2022, 14(6): 2758-2774.
doi: 10.18632/aging.203973 |
[34] | TANG X F, ZHANG A N, FENG Y Y, et al. A novel pyroptosis-related lncRNAs signature for predicting the prognosis of kidney renal clear cell carcinoma and its associations with immunity[J]. J Oncol, 2021, 2021: 9997185. |
[35] |
TAN Y F, WANG M, CHEN Z Y, et al. Inhibition of BRD4 prevents proliferation and epithelial-mesenchymal transition in renal cell carcinoma via NLRP3 inflammasome-induced pyroptosis[J]. Cell Death Dis, 2020, 11(4): 239.
doi: 10.1038/s41419-020-2431-2 |
[36] |
CHOI A M, RYTER S W, LEVINE B. Autophagy in human health and disease[J]. N Engl J Med, 2013, 368(7): 651-662.
doi: 10.1056/NEJMra1205406 |
[37] |
LEVINE B, KROEMER G. Biological functions of autophagy genes: a disease perspective[J]. Cell, 2019, 176(1/2): 11-42.
doi: 10.1016/j.cell.2018.09.048 |
[38] |
ALESSANDRINI F, PEZZÈ L, CIRIBILLI Y. LAMPs: shedding light on cancer biology[J]. Semin Oncol, 2017, 44(4): 239-253.
doi: S0093-7754(17)30046-5 pmid: 29526252 |
[39] |
ZHAO Y, CODOGNO P, ZHANG H. Machinery, regulation and pathophysiological implications of autophagosome maturation[J]. Nat Rev Mol Cell Biol, 2021, 22(11): 733-750.
doi: 10.1038/s41580-021-00392-4 |
[40] | RUSSELL R C, GUAN K L. The multifaceted role of autophagy in cancer[J]. EMBO J, 2022, 41(13): e110031. |
[41] |
LEBOVITZ C B, ROBERTSON A G, GOYA R, et al. Cross-cancer profiling of molecular alterations within the human autophagy interaction network[J]. Autophagy, 2015, 11(9): 1668-1687.
doi: 10.1080/15548627.2015.1067362 pmid: 26208877 |
[42] |
KANG J H, LEE J S, HONG D, et al. Renal cell carcinoma escapes death by p53 depletion through transglutaminase 2-chaperoned autophagy[J]. Cell Death Dis, 2016, 7: e2163.
doi: 10.1038/cddis.2016.14 |
[43] |
TURCOTTE S, CHAN D A, SUTPHIN P D, et al. A molecule targeting VHL-deficient renal cell carcinoma that induces autophagy[J]. Cancer Cell, 2008, 14(1): 90-102.
doi: 10.1016/j.ccr.2008.06.004 pmid: 18598947 |
[44] |
YANG X Q, ZHANG Y Y, FAN H Y. Downregulation of SBF2-AS1 functions as a tumor suppressor in clear cell renal cell carcinoma by inhibiting miR-338-3p-targeted ETS1[J]. Cancer Gene Ther, 2021, 28(7/8): 813-827.
doi: 10.1038/s41417-020-0197-4 |
[45] |
LIANG X Y, DE VERA M E, BUCHSER W J, et al. Inhibiting systemic autophagy during interleukin 2 immunotherapy promotes long-term tumor regression[J]. Cancer Res, 2012, 72(11): 2791-2801.
doi: 10.1158/0008-5472.CAN-12-0320 pmid: 22472122 |
[46] |
PIETROCOLA F, POL J, VACCHELLI E, et al. Caloric restriction mimetics enhance anticancer immunosurveillance[J]. Cancer Cell, 2016, 30(1): 147-160.
doi: S1535-6108(16)30221-5 pmid: 27411589 |
[47] |
ZHANG T, WANG Y N, INUZUKA H, et al. Necroptosis pathways in tumorigenesis[J]. Semin Cancer Biol, 2022, 86(Pt 3): 32-40.
doi: 10.1016/j.semcancer.2022.07.007 |
[48] |
ZHAO C, ZHOU Y F, RAN Q, et al. microRNA-381-3p functions as a dual suppressor of apoptosis and necroptosis and promotes proliferation of renal cancer cells[J]. Front Cell Dev Biol, 2020, 8: 290.
doi: 10.3389/fcell.2020.00290 pmid: 32411707 |
[49] |
MAO Q Y, ZHUANG Q F, SHEN J, et al. MiRNA-124 regulates the sensitivity of renal cancer cells to cisplatin-induced necroptosis by targeting the CAPN4-CNOT3 axis[J]. Transl Androl Urol, 2021, 10(9): 3669-3683.
doi: 10.21037/tau-21-777 pmid: 34733662 |
[50] | WANG K J, MENG X Y, CHEN J F, et al. Emodin induced necroptosis and inhibited glycolysis in the renal cancer cells by enhancing ROS[J]. Oxid Med Cell Longev, 2021, 2021: 8840590. |
[51] |
BRADLEY J R, WANG J, PACEY S, et al. Tumor necrosis factor receptor-2 signaling pathways promote survival of cancer stem-like CD133+ cells in clear cell renal carcinoma[J]. FASEB Bioadvances, 2020, 2(2): 126-144.
doi: 10.1096/fba.2019-00071 |
[1] | WU Zhibai, XU Guiqin, ZHANG Li, YANG Zhaojuan, LIU Yun, JIAO Kun, CHEN Zehong, XU Chen, ZUO You, ZHENG Ningqian, YE Zhiqian, LIU Yongzhong. Mechanism study of KCMF1 promoting proliferation and NF-κB signaling transduction in colorectal cancer cells [J]. China Oncology, 2024, 34(11): 987-997. |
[2] | MA Xiaolan, WANG Juan, SHI Bin, WANG Nan, TIAN Zhicui, CAO Jia. hnRNPK regulates Wnt/β-catenin signaling pathway to inhibit ferroptosis in breast cancer [J]. China Oncology, 2024, 34(10): 931-943. |
[3] | TAN Xiaolang, YAO Sha, WANG Guihua, PENG Luogen. Research on uPAR promoting proliferation, migration, and chemoresistance of pancreatic cancer by inhibiting autophagy via MAPK signaling [J]. China Oncology, 2024, 34(10): 944-956. |
[4] | CHEN Hong, CHEN Junxia. Effect of hsa_circ_0001573 on biological behaviors of breast cancer cells and its molecular mechanism [J]. China Oncology, 2023, 33(4): 342-353. |
[5] | TIAN Xi, XU Wenhao, ZHU Shuxuan, AIHETAIMUJIANG•Anwaier, SU Jiaqi, YE Shiqi, QU Yuanyuan, SHI Guohai, ZHANG Hailiang, YE Dingwei. Advances in the research, diagnosis and treatment of renal cell carcinoma in 2022 [J]. China Oncology, 2023, 33(3): 191-200. |
[6] | LENG Jie, QIU Guochun, ZHANG Bo, PU Yan. Mechanism of breast cancer centrosome regulatory protein SEC23B on tumor invasion and metastasis [J]. China Oncology, 2023, 33(2): 152-161. |
[7] | JIA Yuming, YE Zeng, DENG Yanli, LI Shengchao, ZHANG Zhilei, WANG Chao, XU Xiaowu, QIN Yi, PENG Li. The research on FBW7 gene enhances antitumor effect of paclitaxel on pancreatic cancer through GSDME-mediated pyroptosis [J]. China Oncology, 2023, 33(10): 889-897. |
[8] | SU Jiaqi, XU Wenhao, TIAN Xi, ANWAIE Aihetaimujiang, QU Yuanyuan, SHI Guohai, ZHANG Hailiang, YE Dingwei. New strategies for combined with immunotherapy of clear cell renal cell carcinoma: advances in aerobic glycolysis [J]. China Oncology, 2022, 32(4): 287-297. |
[9] | Diao Xinfeng, Li Xinmao, Hou Liang, Wei Zhixuan. YTHDF2 promotes progression of glioblastoma via inducing mRNA decay of IGFBP7 and activating PI3K/AKT signaling pathway [J]. China Oncology, 2022, 32(3): 218-227. |
[10] | CUI Zhongze, HE Shuang, WEN Feifei, LI Yangyang, XU Xiaoyang, LU Lizhen, WU Shuhua. Experimental study on influence of autophagy on DPD expression and its effect on chemotherapy with 5-FU in colorectal cancer [J]. China Oncology, 2022, 32(12): 1199-1209. |
[11] | ZHANG Jiaxiang, ZHOU Yongxue, YAN Shuguang, ZHAO Weihan, DONG Fen. Research progress of hypoxia-induced mitochondrial autophagy and glucose metabolism reprogramming in gastric precancerous lesions [J]. China Oncology, 2022, 32(10): 1007-1015. |
[12] | CHEN Yifan, SHEN Yihui, CHENG Leilei, LIN Jinyi, ZHANG Hui, WANG Xuejun, XU Yuchen, ZHANG Jian, GE Junbo. Different preventive effects of four cardioprotective agents on mice with adriamycin-induced cardiotoxicity [J]. China Oncology, 2022, 32(10): 936-947. |
[13] | JIA Zhenzhen, HE Shuang, LI Yangyang, WEN Feifei, XU Xiaoyang, GUO Ningjie, WU Shuhua. Correlations between expressions of DPD, LC3 and P62 in colorectal cancer and their clinical significance [J]. China Oncology, 2022, 32(1): 24-33. |
[14] | LEI Kunyang, XIE Wenjie, SUN Ting, LIU Yifu, WANG Xu. Expression and effect of long non-coding RNA ARAP1-AS1 in clear cell renal cell carcinoma [J]. China Oncology, 2022, 32(1): 34-40. |
[15] | LI Haizhou , ZHANG Yanwei , XU Yingjie , YANG Men , ZHANG Lei , HAN Jingjun . miR-933 inhibits proliferation, migration and invasion of lung cancer cell lines by regulation of KLF6 gene [J]. China Oncology, 2021, 31(7): 581-588. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
沪ICP备12009617
Powered by Beijing Magtech Co. Ltd