China Oncology ›› 2025, Vol. 35 ›› Issue (1): 58-67.doi: 10.19401/j.cnki.1007-3639.2025.01.007
• Specialist' Commentary • Previous Articles Next Articles
LIN Qiuyu(), WANG Yuxin, LIN Chenghe(
)
Received:
2024-12-13
Revised:
2025-01-21
Online:
2025-01-30
Published:
2025-02-17
Contact:
LIN Chenghe
Supported by:
Share article
CLC Number:
LIN Qiuyu, WANG Yuxin, LIN Chenghe. Application and prospect of targeted therapy and immunotherapy in radioiodine-refractory differentiated thyroid cancer[J]. China Oncology, 2025, 35(1): 58-67.
Tab. 1
PhaseⅡ or Ⅲ clinical trials addressing the efficacy and adverse events of MKIs for the treatment of RAIR-DTC"
Drug | TC type | Trial type | Patients and treatment | Efficacy | Adverse events in drug group | Reference |
---|---|---|---|---|---|---|
Sorafenib vs placebo | RAIR-DTC | Phase Ⅲ | Total, N=417; sorafenib (400 mg, twice a day), N=207; placebo, N=210 | PFS: 10.8 months (sorafenib) vs 5.8 months (placebo), HR=0.59, P <0.000 1 | Hand-foot syndrome (76.3%), diarrhea (68.6%), alopecia (67.1%), rash or desquamation (50.2%) | [ |
Lenvatinib vs placebo | RAIR-DTC | Phase Ⅲ | Total, N=392; lenvatinib (20 mg, once a day), N=261; placebo, N=131 | PFS: 18.3 months (lenvatinib) vs 3.6 months (placebo), P<0.001; ORR: 64.8% (lenvatinib 1.5% (placebo), P<0.001 | Hypertension (67.8%), diarrhea (59.4%), fatigue or asthenia (59.0%), decreased appetite (50.2%), decreased weight (46.4%), nausea (41.0%) | [ |
Lenvatinib vs placebo | RAIR-DTC | Phase Ⅲ | Total, N=151; lenvatinib (24 mg, once a day), N=103; placebo, N=48 | PFS: 23.9 months (Lenvatinib) vs 3.7 months (placebo), P <0.000 1; ORR: 69.9% (lenvatinib) vs 0.0% (placebo), P <0.000 1 | Hypertension (62.1%), proteinuria (23.3%) | [ |
Cabozantinib vs placebo | RAIR-DTC | Phase Ⅲ | Total, N=258; cabozantinib (60 mg, once a day), N=170; placebo, N=88 | PFS: 11.0 months (cabozantinib) vs 1.9 months (placebo), HR=0.22, P<0.000 1; ORR: 11.0% (Cabozantinib) vs 0% (Placebo), P=0.000 3 | Hypertension (12%), hand-foot syndrome (10%), fatigue (9%) | [ |
Anlotinib vs placebo | RAIR-DTC | Phase Ⅱ | Total, N=113; anlotinib (12 mg, once a day), N=76; placebo, N=37 | PFS: 40.5 months (anlotinib) vs 8.4 months (placebo), HR=0.21, P <0.001 | Hand-foot syndrome (9%), hypertension (8%), proteinuria (5%) | [ |
Donafenib vs placebo | RAIR-DTC | Phase Ⅲ | Total, N=191; donafenib (300 mg, twice a day), N=128; placebo, N=63 | PFS: 12.9 months (donafenib) vs 6.4 months (placebo), HR=0.39, P<0.000 1; ORR: 23.3% (Donafenib) vs 1.7% (Placebo), P=0.000 2 | Hypertension (13.3%), hand-foot syndrome (12.5%) | [ |
Apatinib vs placebo | RAIR-DTC | Phase Ⅲ | Total, N=92; apatinib (500 mg, once a day), N=46; placebo, N=46 | PFS: 22.2 months (apatinib) vs 4.5 months (placebo); HR=0.26, P <0.001; ORR: 54.3% (apatinib) vs 2.2% (placebo) | Hypertension (34.8%), hand-foot syndrome (17.4%), proteinuria (15.2%), diarrhea (15.2%) | [ |
[1] | SIEGEL R L, MILLER K D, FUCHS H E, et al. Cancer statistics, 2022[J]. CA Cancer J Clin, 2022, 72(1): 7-33. |
[2] | MAO Y S, XING M Z. Recent incidences and differential trends of thyroid cancer in the USA[J]. Endocr Relat Cancer, 2016, 23(4): 313-322. |
[3] | HAUGEN B R, ALEXANDER E K, BIBLE K C, et al. 2015 American thyroid association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the American thyroid association guidelines task force on thyroid nodules and differentiated thyroid cancer[J]. Thyroid, 2016, 26(1): 1-133. |
[4] | 中国临床肿瘤学会核医学专家委员会, 中国临床肿瘤学会甲状腺癌专家委员会, 中华医学会核医学分会, 等. 放射性碘难治性分化型甲状腺癌诊治管理指南(2024版)[J]. 中华核医学与分子影像杂志, 2024, 44(6): 359-372. |
Nuclear Medicine Expert Committee of Chinese Society of Clinical Oncology, Thyroid Cancer Expert Committee of Chinese Society of Clinical Oncology, Thyroid Cancer Expert Committee of Chinese Society of Clinical Oncology, Chinese Society of Nuclear Medicine, et al. Management guidelines for radioactive iodine-refractory differentiated thyroid cancer (2024 edition)[J]. Chin J Nucl Med Mol Imag, 2024, 44(6): 359-372. | |
[5] | VAN NOSTRAND D, VEYTSMAN I, KULKARNI K, et al. Redifferentiation of differentiated thyroid cancer: clinical insights from a narrative review of literature[J]. Thyroid, 2023, 33(6): 674-681. |
[6] | BROSE M S, SMIT J, CAPDEVILA J, et al. Regional approaches to the management of patients with advanced, radioactive iodine-refractory differentiated thyroid carcinoma[J]. Expert Rev Anticancer Ther, 2012, 12(9): 1137-1147. |
[7] | YAVUZ S, PUCKETT Y. Iodine-131 uptake study[M], StatPearls. Treasure Island: StatPearls Publishing, 2023. |
[8] |
HOU P, BOJDANI E, XING M Z. Induction of thyroid gene expression and radioiodine uptake in thyroid cancer cells by targeting major signaling pathways[J]. J Clin Endocrinol Metab, 2010, 95(2): 820-828.
doi: 10.1210/jc.2009-1888 pmid: 20008023 |
[9] | ZHANG Z J, LIU D X, MURUGAN A K, et al. Histone deacetylation of NIS promoter underlies BRAF V600E-promoted NIS silencing in thyroid cancer[J]. Endocr Relat Cancer, 2014, 21(2): 161-173. |
[10] | NAGARAJAH J, LE M N, KNAUF J A, et al. Sustained ERK inhibition maximizes responses of Braf V600E thyroid cancers to radioiodine[J]. J Clin Invest, 2016, 126(11): 4119-4124. |
[11] | LAHA D, NILUBOL N, BOUFRAQECH M. New therapies for advanced thyroid cancer[J]. Front Endocrinol (Lausanne), 2020, 11: 82. |
[12] |
HAROON AL, RASHEED M R, XU B. Molecular alterations in thyroid carcinoma[J]. Surg Pathol Clin, 2019, 12(4): 921-930.
doi: S1875-9181(19)30058-3 pmid: 31672298 |
[13] |
XING M Z. Identifying genetic alterations in poorly differentiated thyroid cancer: a rewarding pursuit[J]. J Clin Endocrinol Metab, 2009, 94(12): 4661-4664.
doi: 10.1210/jc.2009-2147 pmid: 19959752 |
[14] | MIZUKAMI T, SHIRAISHI K, SHIMADA Y, et al. Molecular mechanisms underlying oncogenic RET fusion in lung adenocarcinoma[J]. J Thorac Oncol, 2014, 9(5): 622-630. |
[15] | YANG X, LI J, LI X Y, et al. TERT promoter mutation predicts radioiodine-refractory character in distant metastatic differentiated thyroid cancer[J]. J Nucl Med, 2017, 58(2): 258-265. |
[16] |
ARAQUE K A, GUBBI S, KLUBO-GWIEZDZINSKA J. Updates on the management of thyroid cancer[J]. Horm Metab Res, 2020, 52(8): 562-577.
doi: 10.1055/a-1089-7870 pmid: 32040962 |
[17] | TUCCILLI C, BALDINI E, SORRENTI S, et al. CTLA-4 and PD-1 ligand gene expression in epithelial thyroid cancers[J]. Int J Endocrinol, 2018, 2018: 1742951. |
[18] |
CUNHA L L, MARCELLO M A, VASSALLO J, et al. Differentiated thyroid carcinomas and their B7H1 shield[J]. Future Oncol, 2013, 9(10): 1417-1419.
doi: 10.2217/fon.13.89 pmid: 23651132 |
[19] | AL-ABDALLAH A, JAHANBANI I, MEHDAWI H, et al. Down-regulation of the human major histocompatibility complex class Ⅰ chain-related gene A (MICA) and its receptor is mediated by microRNA-146b-5p and is a potential mechanism of immunoediting in papillary thyroid carcinoma[J]. Exp Mol Pathol, 2020, 113: 104379. |
[20] | ULISSE S, TUCCILLI C, SORRENTI S, et al. PD-1 ligand expression in epithelial thyroid cancers: potential clinical implications[J]. Int J Mol Sci, 2019, 20(6): 1405. |
[21] | BASTOS A U, OLER G, NOZIMA B H N, et al. BRAF V600E and decreased NIS and TPO expression are associated with aggressiveness of a subgroup of papillary thyroid microcarcinoma[J]. Eur J Endocrinol, 2015, 173(4): 525-540. |
[22] |
CORRADO A, FERRARI S M, POLITTI U, et al. Aggressive thyroid cancer: targeted therapy with sorafenib[J]. Minerva Endocrinol, 2017, 42(1): 64-76.
doi: 10.23736/S0391-1977.16.02229-X pmid: 26112458 |
[23] | SHEN H Z, ZHU R, LIU Y Y, et al. Radioiodine-refractory differentiated thyroid cancer: molecular mechanisms and therapeutic strategies for radioiodine resistance[J]. Drug Resist Updat, 2024, 72: 101013. |
[24] |
BROSE M S, NUTTING C M, JARZAB B, et al. Sorafenib in radioactive iodine-refractory, locally advanced or metastatic differentiated thyroid cancer: a randomised, double-blind, phase 3 trial[J]. Lancet, 2014, 384(9940): 319-328.
doi: 10.1016/S0140-6736(14)60421-9 pmid: 24768112 |
[25] |
DACOSTA BYFIELD S A, ADEJORO O, COPHER R, et al. Real-world treatment patterns among patients initiating small molecule kinase inhibitor therapies for thyroid cancer in the United States[J]. Adv Ther, 2019, 36(4): 896-915.
doi: 10.1007/s12325-019-0890-6 pmid: 30820872 |
[26] | SILAGHI H, LOZOVANU V, GEORGESCU C E, et al. State of the art in the current management and future directions of targeted therapy for differentiated thyroid cancer[J]. Int J Mol Sci, 2022, 23(7): 3470. |
[27] | SCHLUMBERGER M, TAHARA M, WIRTH L J, et al. Lenvatinib versus placebo in radioiodine-refractory thyroid cancer[J]. N Engl J Med, 2015, 372(7): 621-630. |
[28] | ZHENG X Q, XU Z G, JI Q H, et al. A randomized, phase Ⅲ study of lenvatinib in Chinese patients with radioiodine-refractory differentiated thyroid cancer[J]. Clin Cancer Res, 2021, 27(20): 5502-5509. |
[29] |
BROSE M S, ROBINSON B G, SHERMAN S I, et al. Cabozantinib for previously treated radioiodine-refractory differentiated thyroid cancer: Updated results from the phase 3 COSMIC-311 trial[J]. Cancer, 2022, 128(24): 4203-4212.
doi: 10.1002/cncr.34493 pmid: 36259380 |
[30] | CAPDEVILA J, KRAJEWSKA J, HERNANDO J, et al. Increased progression-free survival with cabozantinib versus placebo in patients with radioiodine-refractory differentiated thyroid cancer irrespective of prior vascular endothelial growth factor receptor-targeted therapy and tumor histology: a subgroup analysis of the COSMIC-311 study[J]. Thyroid, 2024, 34(3): 347-359. |
[31] | CHI Y, ZHENG X Q, ZHANG Y, et al. Anlotinib in locally advanced or metastatic radioiodine-refractory differentiated thyroid carcinoma: a randomized, double-blind, multicenter phase Ⅱ trial[J]. Clin Cancer Res, 2023, 29(20): 4047-4056. |
[32] | 李娇, 韩娜, 卢承慧, 等. 安罗替尼治疗远处转移性放射性碘难治性分化型甲状腺癌的有效性及安全性分析[J]. 中华核医学与分子影像杂志, 2023, 43(8): 470-474. |
LI J, HAN N, LU C H, et al. Efficacy and safety analysis of anlotinib in the treatment of distant metastatic radioactive iodine-refractory differentiated thyroid cancer[J]. Chin J Nucl Med Mol Imag, 2023, 43(8): 470-474. | |
[33] | 张芳蕾, 翟红彦, 闫瑞红, 等. 安罗替尼对进展期放射性碘难治性分化型甲状腺癌的疗效及对病灶摄碘功能的影响[J]. 中华核医学与分子影像杂志, 2024, 44(10): 592-596. |
ZHANG F L, ZHAI H Y, YAN R H, et al. Efficacy of anlotinib in the treatment of advanced radioactive iodine-refractory differentiated thyroid cancer and the effect on iodine uptake of lesions[J]. Chin J Nucl Med Mol Imag, 2024, 44(10): 592-596. | |
[34] | LIU Y J, WANG J F, HU X P, et al. Radioiodine therapy in advanced differentiated thyroid cancer: resistance and overcoming strategy[J]. Drug Resist Updat, 2023, 68: 100939. |
[35] | LIN Y S, YANG H, DING Y, et al. Donafenib in progressive locally advanced or metastatic radioactive iodine-refractory differentiated thyroid cancer: results of a randomized, multicenter phase II trial[J]. Thyroid, 2021, 31(4): 607-615. |
[36] | LIN Y S, QIN S K, YANG H, et al. Multicenter randomized double-blind phase Ⅲ trial of donafenib in progressive radioactive iodine-refractory differentiated thyroid cancer[J]. Clin Cancer Res, 2023, 29(15): 2791-2799. |
[37] | LIN Y S, QIN S K, LI Z Y, et al. Apatinib vs placebo in patients with locally advanced or metastatic, radioactive iodine-refractory differentiated thyroid cancer: the REALITY randomized clinical trial[J]. JAMA Oncol, 2022, 8(2): 242-250. |
[38] | 刘杰蕊, 张鑫, 孙郁青, 等. BRAF V600E突变辅助预测放射性碘难治性分化型甲状腺癌阿帕替尼治疗效果的意义[J]. 中华核医学与分子影像杂志, 2023, 43(8): 465-469. |
LIU J R, ZHANG X, SUN Y Q, et al. Significance of BRAF V600E mutation in prediction of the efficacy of apatinib for radioactive iodine-refractory differentiated thyroid cancer\n[J]. Chin J Nucl Med Mol Imag, 2023, 43(8): 465-469. | |
[39] | QIU X, CHENG L, SA R, et al. Initial or salvage treatment with apatinib shows promise against radioiodine-refractory differentiated thyroid carcinoma[J]. Eur Thyroid J, 2022, 11(2): e210065. |
[40] | DUNN L A, SHERMAN E J, BAXI S S, et al. Vemurafenib redifferentiation of BRAF mutant, RAI-refractory thyroid cancers[J]. J Clin Endocrinol Metab, 2019, 104(5): 1417-1428. |
[41] | MICHAEL ROTHENBERG S, MCFADDEN D G, PALMER E L, et al. Redifferentiation of iodine-refractory BRAF V600E-mutant metastatic papillary thyroid cancer with dabrafenib[J]. Clin Cancer Res, 2015, 21(5): 1028-1035. |
[42] | HO A L, GREWAL R K, LEBOEUF R, et al. Selumetinib-enhanced radioiodine uptake in advanced thyroid cancer[J]. N Engl J Med, 2013, 368(7): 623-632. |
[43] | BUSAIDY N L, KONDA B, WEI L, et al. Dabrafenib versus dabrafenib+trametinib in BRAF-mutated radioactive iodine refractory differentiated thyroid cancer: results of a randomized, phase 2, open-label multicenter trial[J]. Thyroid, 2022, 32(10): 1184-1192. |
[44] | SHI B, MA W B, PAN H S, et al. Cost-effectiveness of apatinib and cabozantinib for the treatment of radioiodine-refractory differentiated thyroid cancer[J]. Front Pharmacol, 2022, 13: 860615. |
[45] | WANG X S, LI M Y. Correlate tumor mutation burden with immune signatures in human cancers[J]. BMC Immunol, 2019, 20(1): 4. |
[46] | PINHEIRO NETO A, LUCCHESI H L, VALSECCHI V A D S, et al. Immunotherapy for patients with thyroid cancer: a comprehensive appraisal[J]. Chin Clin Oncol, 2024, 13(3): 36. |
[47] |
NIKIFOROV Y E, NIKIFOROVA M N. Molecular genetics and diagnosis of thyroid cancer[J]. Nat Rev Endocrinol, 2011, 7(10): 569-580.
doi: 10.1038/nrendo.2011.142 pmid: 21878896 |
[48] | WANG S M, KHAN F I. Investigation of molecular interactions mechanism of pembrolizumab and PD-1[J]. Int J Mol Sci, 2023, 24(13): 10684. |
[49] | MEHNERT J M, VARGA A, BROSE M S, et al. Safety and antitumor activity of the anti-PD-1 antibody pembrolizumab in patients with advanced, PD-L1-positive papillary or follicular thyroid cancer[J]. BMC Cancer, 2019, 19(1): 196. |
[50] | OH D Y, ALGAZI A, CAPDEVILA J, et al. Efficacy and safety of pembrolizumab monotherapy in patients with advanced thyroid cancer in the phase 2 KEYNOTE-158 study[J]. Cancer, 2023, 129(8): 1195-1204. |
[51] | PAZ-ARES L, DVORKIN M, CHEN Y B, et al. Durvalumab plus platinum-etoposide versus platinum-etoposide in first-line treatment of extensive-stage small-cell lung cancer (CASPIAN): a randomised, controlled, open-label, phase 3 trial[J]. Lancet, 2019, 394(10212): 1929-1939. |
[52] | BURMAN B, SHERMAN E J, KRIPLANI A, et al. Radioiodine (RAI) in combination with durvalumab for recurrent/metastatic thyroid cancers[J]. J Clin Oncol, 2020, 38(15_suppl): 6587. |
[53] | WÄCHTER S, KNAUFF F, ROTH S, et al. Synergic induction of autophagic cell death in anaplastic thyroid carcinoma[J]. Cancer Invest, 2023, 41(4): 405-421. |
[54] | TABERNERO J, ANDRE F, BLAY J Y, et al. Phase Ⅱ multicohort study of atezolizumab monotherapy in multiple advanced solid cancers[J]. ESMO Open, 2022, 7(2): 100419. |
[55] | WANG Y C, ZHANG H, LIU C, et al. Immune checkpoint modulators in cancer immunotherapy: recent advances and emerging concepts[J]. J Hematol Oncol, 2022, 15(1): 111. |
[56] |
SAKAMURI D, GLITZA I C, BETANCOURT CUELLAR S L, et al. Phase I dose-escalation study of anti-CTLA-4 antibody ipilimumab and lenalidomide in patients with advanced cancers[J]. Mol Cancer Ther, 2018, 17(3): 671-676.
doi: 10.1158/1535-7163.MCT-17-0673 pmid: 29237802 |
[57] | BARBARI C, FONTAINE T, PARAJULI P, et al. Immunotherapies and combination strategies for immuno-oncology[J]. Int J Mol Sci, 2020, 21(14): 5009. |
[58] | LORCH J H, BARLETTA J A, NEHS M, et al. A phase II study of nivolumab (N) plus ipilimumab (I) in radioidine refractory differentiated thyroid cancer (RAIR DTC) with exploratory cohorts in anaplastic (ATC) and medullary thyroid cancer (MTC)[J]. J Clin Oncol, 2020, 38(15_suppl): 6513. |
[59] | SHENG X Y. Evaluation of safety and therapeutic efficacy of CAR-T therapy[J]. Highlights Sci Eng Technol, 2024, 91: 272-276. |
[60] | LI H N, ZHOU X, WANG G, et al. CAR-T cells targeting TSHR demonstrate safety and potent preclinical activity against differentiated thyroid cancer[J]. J Clin Endocrinol Metab, 2022, 107(4): 1110-1126. |
[61] |
MIN I M, SHEVLIN E, VEDVYAS Y, et al. CAR T therapy targeting ICAM-1 eliminates advanced human thyroid tumors[J]. Clin Cancer Res, 2017, 23(24): 7569-7583.
doi: 10.1158/1078-0432.CCR-17-2008 pmid: 29025766 |
[62] | HAUGEN B, FRENCH J, WORDEN F P, et al. Lenvatinib plus pembrolizumab combination therapy in patients with radioiodine-refractory (RAIR), progressive differentiated thyroid cancer (DTC): results of a multicenter phase Ⅱ International Thyroid Oncology Group trial[J]. J Clin Oncol, 2020, 38(15_suppl): 6512. |
[63] | HAUGEN B, FRENCH J D, WORDEN F, et al. Pembrolizumab salvage add-on therapy in patients with radioiodine-refractory (RAIR), progressive differentiated thyroid cancer (DTC) progressing on lenvatinib: results of a multicenter phase Ⅱ International Thyroid Oncology Group trial[J]. Ann Oncol, 2020, 31: S1086-S1087. |
[64] | FRENCH J D, HAUGEN B R, WORDEN F P, et al. Combination targeted therapy with pembrolizumab and lenvatinib in progressive, radioiodine-refractory differentiated thyroid cancers[J]. Clin Cancer Res, 2024, 30(17): 3757-3767. |
[65] | LI J Y, ZHANG X, MU Z Z, et al. Response to apatinib and camrelizumab combined treatment in a radioiodine refractory differentiated thyroid cancer patient resistant to prior anti-angiogenic therapy: a case report and literature review[J]. Front Immunol, 2022, 13: 943916. |
[66] |
VANNEMAN M, DRANOFF G. Combining immunotherapy and targeted therapies in cancer treatment[J]. Nat Rev Cancer, 2012, 12(4): 237-251.
doi: 10.1038/nrc3237 pmid: 22437869 |
[67] |
ACKERMAN A, KLEIN O, MCDERMOTT D F, et al. Outcomes of patients with metastatic melanoma treated with immunotherapy prior to or after BRAF inhibitors[J]. Cancer, 2014, 120(11): 1695-1701.
doi: 10.1002/cncr.28620 pmid: 24577748 |
[68] | BONI A, COGDILL A P, DANG P, et al. Selective BRAF V600E inhibition enhances T-cell recognition of melanoma without affecting lymphocyte function[J]. Cancer Res, 2010, 70(13): 5213-5219. |
[69] |
SUMIMOTO H, IMABAYASHI F, IWATA T, et al. The BRAF-MAPK signaling pathway is essential for cancer-immune evasion in human melanoma cells[J]. J Exp Med, 2006, 203(7): 1651-1656.
doi: 10.1084/jem.20051848 pmid: 16801397 |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
沪ICP备12009617
Powered by Beijing Magtech Co. Ltd