China Oncology ›› 2023, Vol. 33 ›› Issue (6): 629-636.doi: 10.19401/j.cnki.1007-3639.2023.06.011
• Review • Previous Articles
ZHANG Shaoqiu1(), YAN Li1, LI Ruichen1, ZHAO Yang1, WANG Xiaoshen1, YANG Xuguang2, ZHU Yi1(
)
Received:
2023-01-02
Revised:
2023-05-09
Online:
2023-06-30
Published:
2023-07-26
Share article
CLC Number:
ZHANG Shaoqiu, YAN Li, LI Ruichen, ZHAO Yang, WANG Xiaoshen, YANG Xuguang, ZHU Yi. Recent advances and prospect in immune microenvironment and its mechanisms of function in head and neck squamous cell carcinoma[J]. China Oncology, 2023, 33(6): 629-636.
[1] |
GUPTA B, JOHNSON N W, KUMAR N. Global epidemiology of head and neck cancers: a continuing challenge[J]. Oncology, 2016, 91(1): 13-23.
doi: 10.1159/000446117 pmid: 27245686 |
[2] |
HO A S, KIM S, TIGHIOUART M, et al. Metastatic lymph node burden and survival in oral cavity cancer[J]. J Clin Oncol, 2017, 35(31): 3601-3609.
doi: 10.1200/JCO.2016.71.1176 pmid: 28880746 |
[3] |
FAN S, TANG Q L, LIN Y J, et al. A review of clinical and histological parameters associated with contralateral neck metastases in oral squamous cell carcinoma[J]. Int J Oral Sci, 2011, 3(4): 180-191.
doi: 10.4248/IJOS11068 pmid: 22010576 |
[4] |
RETTIG E M, D'SOUZA G. Epidemiology of head and neck cancer[J]. Surg Oncol Clin N Am, 2015, 24(3): 379-396.
doi: 10.1016/j.soc.2015.03.001 pmid: 25979389 |
[5] |
COHEN N, FEDEWA S, CHEN A Y. Epidemiology and demographics of the head and neck cancer population[J]. Oral Maxillofac Surg Clin North Am, 2018, 30(4): 381-395.
doi: 10.1016/j.coms.2018.06.001 |
[6] |
SACCO A G, COHEN E E. Current treatment options for recurrent or metastatic head and neck squamous cell carcinoma[J]. J Clin Oncol, 2015, 33(29): 3305-3313.
doi: 10.1200/JCO.2015.62.0963 pmid: 26351341 |
[7] |
HANAHAN D, COUSSENS L M. Accessories to the crime: functions of cells recruited to the tumor microenvironment[J]. Cancer Cell, 2012, 21(3): 309-322.
doi: 10.1016/j.ccr.2012.02.022 pmid: 22439926 |
[8] |
JOYCE J A, FEARON D T. T cell exclusion, immune privilege, and the tumor microenvironment[J]. Science, 2015, 348(6230): 74-80.
doi: 10.1126/science.aaa6204 pmid: 25838376 |
[9] |
TADDEI M L, GIANNONI E, COMITO G, et al. Microenvironment and tumor cell plasticity: an easy way out[J]. Cancer Lett, 2013, 341(1): 80-96.
doi: 10.1016/j.canlet.2013.01.042 pmid: 23376253 |
[10] |
PIETRAS K, OSTMAN A. Hallmarks of cancer: interactions with the tumor stroma[J]. Exp Cell Res, 2010, 316(8): 1324-1331.
doi: 10.1016/j.yexcr.2010.02.045 pmid: 20211171 |
[11] |
MEI Z, HUANG J W, QIAO B, et al. Immune checkpoint pathways in immunotherapy for head and neck squamous cell carcinoma[J]. Int J Oral Sci, 2020, 12(1): 16.
doi: 10.1038/s41368-020-0084-8 pmid: 32461587 |
[12] |
YANG B, LIU T J, QU Y, et al. Progresses and perspectives of anti-PD-1/PD-L1 antibody therapy in head and neck cancers[J]. Front Oncol, 2018, 8: 563.
doi: 10.3389/fonc.2018.00563 pmid: 30547012 |
[13] |
CARLISLE J W, STEUER C E, OWONIKOKO T K, et al. An update on the immune landscape in lung and head and neck cancers[J]. CA Cancer J Clin, 2020, 70(6): 505-517.
doi: 10.3322/caac.v70.6 |
[14] |
PAMER E, CRESSWELL P. Mechanisms of MHC classⅠ: restricted antigen processing[J]. Annu Rev Immunol, 1998, 16: 323-358.
doi: 10.1146/immunol.1998.16.issue-1 |
[15] |
VAN DOMSELAAR R, QUADIR R, et al. VAN DER MADE A M, All human granzymes target hnRNP K that is essential for tumor cell viability[J]. J Biol Chem, 2012, 287(27): 22854-22864.
doi: 10.1074/jbc.M112.365692 pmid: 22582387 |
[16] |
VAN DOMSELAAR R, DE POOT S A, REMMERSWAAL E B, et al. Granzyme M targets host cell hnRNP K that is essential for human cytomegalovirus replication[J]. Cell Death Differ, 2013, 20(3): 419-429.
doi: 10.1038/cdd.2012.132 pmid: 23099853 |
[17] | MANDAL R, ŞENBABAOĞLU Y, DESRICHARD A, et al. The head and neck cancer immune landscape and its immunotherapeutic implications[J]. JCI Insight, 2016, 1(17): e89829. |
[18] |
LIU L H, LIM M A, JUNG S N, et al. The effect of Curcumin on multi-level immune checkpoint blockade and T cell dysfunction in head and neck cancer[J]. Phytomedicine, 2021, 92: 153758.
doi: 10.1016/j.phymed.2021.153758 |
[19] |
WANG H C, CHAN L P, CHO S F. Targeting the immune microenvironment in the treatment of head and neck squamous cell carcinoma[J]. Front Oncol, 2019, 9: 1084.
doi: 10.3389/fonc.2019.01084 |
[20] |
MONTLER R, BELL R B, THALHOFER C, et al. OX40, PD-1 and CTLA-4 are selectively expressed on tumor-infiltrating T cells in head and neck cancer[J]. Clin Transl Immunol, 2016, 5(4): e70.
doi: 10.1038/cti.2016.16 |
[21] |
MAZZONI A, CAPONE M, RAMAZZOTTI M, et al. IL4I1 is expressed by head-neck cancer-derived mesenchymal stromal cells and contributes to suppress T cell proliferation[J]. J Clin Med, 2021, 10(10): 2111.
doi: 10.3390/jcm10102111 |
[22] |
LI H Z, XIAO Y, LI Q, et al. The allergy mediator histamine confers resistance to immunotherapy in cancer patients via activation of the macrophage histamine receptor H1[J]. Cancer Cell, 2022, 40(1): 36-52.e9.
doi: 10.1016/j.ccell.2021.11.002 |
[23] |
LI J Y, ZHAO Y, GONG S, et al. TRIM21 inhibits irradiation-induced mitochondrial DNA release and impairs antitumour immunity in nasopharyngeal carcinoma tumour models[J]. Nat Commun, 2023, 14(1): 865.
doi: 10.1038/s41467-023-36523-y |
[24] |
HIRAHARA K, NAKAYAMA T. CD4+ T-cell subsets in inflammatory diseases: beyond the Th1/Th2 paradigm[J]. Int Immunol, 2016, 28(4): 163-171.
doi: 10.1093/intimm/dxw006 |
[25] |
LAIDLAW B J, CRAFT J E, KAECH S M. The multifaceted role of CD4+ T cells in CD8+ T cell memory[J]. Nat Rev Immunol, 2016, 16(2): 102-111.
doi: 10.1038/nri.2015.10 |
[26] |
SAKAGUCHI S, YAMAGUCHI T, NOMURA T, et al. Regulatory T cells and immune tolerance[J]. Cell, 2008, 133(5): 775-787.
doi: 10.1016/j.cell.2008.05.009 pmid: 18510923 |
[27] |
DUHEN T, GOUGH M J, LEIDNER R S, et al. Development and therapeutic manipulation of the head and neck cancer tumor environment to improve clinical outcomes[J]. Front Oral Health, 2022, 3: 902160.
doi: 10.3389/froh.2022.902160 |
[28] |
DUHEN R, FESNEAU O, SAMSON K A, et al. PD-1 and ICOS coexpression identifies tumor-reactive CD4+ T cells in human solid tumors[J]. J Clin Invest, 2022, 132(12): e156821.
doi: 10.1172/JCI156821 |
[29] |
KATABATHULA R, JOSEPH P, SINGH S, et al. Multi-scale pan-cancer integrative analyses identify the STAT3-VSIR axis as a key immunosuppressive mechanism in head and neck cancer[J]. Clin Cancer Res, 2022, 28(5): 984-992.
doi: 10.1158/1078-0432.CCR-21-1978 |
[30] |
HEATH B R, GONG W, TANER H F, et al. Saturated fatty acids dampen the immunogenicity of cancer by suppressing STING[J]. Cell Rep, 2023, 42(4): 112303.
doi: 10.1016/j.celrep.2023.112303 |
[31] |
WALKER L S. Treg and CTLA-4: two intertwining pathways to immune tolerance[J]. J Autoimmun, 2013, 45: 49-57.
doi: 10.1016/j.jaut.2013.06.006 pmid: 23849743 |
[32] |
OU D, ADAM J, GARBERIS I, et al. Clinical relevance of tumor infiltrating lymphocytes, PD-L1 expression and correlation with HPV/p16 in head and neck cancer treated with bio- or chemo-radiotherapy[J]. Oncoimmunology, 2017, 6(9): e1341030.
doi: 10.1080/2162402X.2017.1341030 |
[33] |
JIE H B, GILDENER-LEAPMAN N, LI J, et al. Intratumoral regulatory T cells upregulate immunosuppressive molecules in head and neck cancer patients[J]. Br J Cancer, 2013, 109(10): 2629-2635.
doi: 10.1038/bjc.2013.645 |
[34] |
WEN Y H, LIN H Q, LI H, et al. Stromal interleukin-33 promotes regulatory T cell-mediated immunosuppression in head and neck squamous cell carcinoma and correlates with poor prognosis[J]. Cancer Immunol Immunother, 2019, 68(2): 221-232.
doi: 10.1007/s00262-018-2265-2 |
[35] |
NIRSCHL C J, DRAKE C G. Molecular pathways: Coexpression of immune checkpoint molecules: signaling pathways and implications for cancer immunotherapy[J]. Clin Cancer Res, 2013, 19(18): 4917-4924.
doi: 10.1158/1078-0432.CCR-12-1972 pmid: 23868869 |
[36] |
MRIZAK D, MARTIN N, BARJON C, et al. Effect of nasopharyngeal carcinoma-derived exosomes on human regulatory T cells[J]. J Natl Cancer Inst, 2015, 107(1): 363.
doi: 10.1093/jnci/dju363 pmid: 25505237 |
[37] |
GADWA J, BICKETT T E, DARRAGH L B, et al. Complement C3a and C5a receptor blockade modulates regulatory T cell conversion in head and neck cancer[J]. J Immunother Cancer, 2021, 9(3): e002585.
doi: 10.1136/jitc-2021-002585 |
[38] |
ESCHWEILER S, RAMÍREZ-SUÁSTEGUI C, LI Y C, et al. Intermittent PI3Kδ inhibition sustains anti-tumour immunity and curbs irAEs[J]. Nature, 2022, 605(7911): 741-746.
doi: 10.1038/s41586-022-04685-2 |
[39] |
CHUCKRAN C A, CILLO A R, MOSKOVITZ J, et al. Prevalence of intratumoral regulatory T cells expressing neuropilin-1 is associated with poorer outcomes in patients with cancer[J]. Sci Transl Med, 2021, 13(623): eabf8495.
doi: 10.1126/scitranslmed.abf8495 |
[40] |
RUTIHINDA C, HAROUN R, SAIDI N E, et al. Inhibition of the CCR6-CCL20 axis prevents regulatory T cell recruitment and sensitizes head and neck squamous cell carcinoma to radiation therapy[J]. Cancer Immunol Immunother, 2023, 72(5): 1089-1102.
doi: 10.1007/s00262-022-03313-2 |
[41] |
GONG L Q, LUO J, ZHANG Y, et al. Nasopharyngeal carcinoma cells promote regulatory T cell development and suppressive activity via CD70-CD27 interaction[J]. Nat Commun, 2023, 14(1): 1912.
doi: 10.1038/s41467-023-37614-6 pmid: 37024479 |
[42] |
KESKINOV A A, SHURIN M R. Myeloid regulatory cells in tumor spreading and metastasis[J]. Immunobiology, 2015, 220(2): 236-242.
doi: 10.1016/j.imbio.2014.07.017 pmid: 25178934 |
[43] |
BRONTE V, BRANDAU S, CHEN S H, et al. Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards[J]. Nat Commun, 2016, 7: 12150.
doi: 10.1038/ncomms12150 pmid: 27381735 |
[44] |
VASQUEZ-DUNDDEL D, PAN F, ZENG Q, et al. STAT3 regulates arginase-Ⅰ in myeloid-derived suppressor cells from cancer patients[J]. J Clin Invest, 2013, 123(4): 1580-1589.
doi: 10.1172/JCI60083 |
[45] |
GREENE S, ROBBINS Y, MYDLARZ W K, et al. Inhibition of MDSC trafficking with SX-682, a CXCR1/2 inhibitor, enhances NK-cell immunotherapy in head and neck cancer models[J]. Clin Cancer Res, 2020, 26(6): 1420-1431.
doi: 10.1158/1078-0432.CCR-19-2625 pmid: 31848188 |
[46] |
ZHU G Q, YANG F, WEI H X, et al. 90 K increased delivery efficiency of extracellular vesicles through mediating internalization[J]. J Control Release, 2023, 353: 930-942.
doi: 10.1016/j.jconrel.2022.12.034 |
[47] |
XU Y L, YAN J X, TAO Y, et al. Pituitary hormone α-MSH promotes tumor-induced myelopoiesis and immunosuppression[J]. Science, 2022, 377(6610): 1085-1091.
doi: 10.1126/science.abj2674 pmid: 35926007 |
[48] |
PRASAD M, ZOREA J, JAGADEESHAN S, et al. MEK1/2 inhibition transiently alters the tumor immune microenvironment to enhance immunotherapy efficacy against head and neck cancer[J]. J Immunother Cancer, 2022, 10(3): e003917.
doi: 10.1136/jitc-2021-003917 |
[49] | GUAN L, NAMBIAR D K, CAO H B, et al. NFE2L2 mutations enhance radioresistance in head and neck cancer by modulating intratumoral myeloid cells[J]. Cancer Res, 2023, 83(6): 861-874. |
[50] |
VIVIER E, TOMASELLO E, BARATIN M, et al. Functions of natural killer cells[J]. Nat Immunol, 2008, 9(5): 503-510.
doi: 10.1038/ni1582 pmid: 18425107 |
[51] |
MARTÍNEZ-LOSTAO L, ANEL A, PARDO J. How do cytotoxic lymphocytes kill cancer cells?[J]. Clin Cancer Res, 2015, 21(22): 5047-5056.
doi: 10.1158/1078-0432.CCR-15-0685 |
[52] |
FREEMAN A J, VERVOORT S J, RAMSBOTTOM K M, et al. Natural killer cells suppress T cell-associated tumor immune evasion[J]. Cell Rep, 2019, 28(11): 2784-2794.e5.
doi: S2211-1247(19)31050-2 pmid: 31509742 |
[53] |
VAN MONTFOORT N, BORST L, KORRER M J, et al. NKG2A blockade potentiates CD8 T cell immunity induced by cancer vaccines[J]. Cell, 2018, 175(7): 1744-1755.e15.
doi: 10.1016/j.cell.2018.10.028 |
[54] |
LUDWIG S, FLOROS T, THEODORAKI M N, et al. Suppression of lymphocyte functions by plasma exosomes correlates with disease activity in patients with head and neck cancer[J]. Clin Cancer Res, 2017, 23(16): 4843-4854.
doi: 10.1158/1078-0432.CCR-16-2819 pmid: 28400428 |
[55] |
SHEN X, WANG P, DAI P, et al. Correlation between human leukocyte antigen-G expression and clinical parameters in oral squamous cell carcinoma[J]. Indian J Cancer, 2018, 55(4): 340-343.
doi: 10.4103/ijc.IJC_602_17 pmid: 30829267 |
[56] |
ANDRÉ P, DENIS C, SOULAS C, et al. Anti-NKG2A MAb is a checkpoint inhibitor that promotes anti-tumor immunity by unleashing both T and NK cells[J]. Cell, 2018, 175(7): 1731-1743.e13.
doi: S0092-8674(18)31322-9 pmid: 30503213 |
[57] |
RETICKER-FLYNN N E, ZHANG W R, BELK J A, et al. Lymph node colonization induces tumor-immune tolerance to promote distant metastasis[J]. Cell, 2022, 185(11): 1924-1942.e23.
doi: 10.1016/j.cell.2022.04.019 |
[58] |
BERNAREGGI D, XIE Q, PRAGER B C, et al. CHMP2A regulates tumor sensitivity to natural killer cell-mediated cytotoxicity[J]. Nat Commun, 2022, 13(1): 1899.
doi: 10.1038/s41467-022-29469-0 pmid: 35393416 |
[59] |
JUNG E K, CHU T H, VO M C, et al. Natural killer cells have a synergistic anti-tumor effect in combination with chemoradiotherapy against head and neck cancer[J]. Cytotherapy, 2022, 24(9): 905-915.
doi: 10.1016/j.jcyt.2022.05.004 pmid: 35778350 |
[60] |
LI X Y, CORVINO D, NOWLAN B, et al. NKG7 is required for optimal antitumor T-cell immunity[J]. Cancer Immunol Res, 2022, 10(2): 154-161.
doi: 10.1158/2326-6066.CIR-20-0649 |
[61] |
CRIST M, YANIV B, PALACKDHARRY S, et al. Metformin increases natural killer cell functions in head and neck squamous cell carcinoma through CXCL1 inhibition[J]. J Immunother Cancer, 2022, 10(11): e005632.
doi: 10.1136/jitc-2022-005632 |
[62] |
LEE Y M, CHEN Y H, OU D L, et al. SN-38, an active metabolite of irinotecan, enhances anti-PD-1 treatment efficacy in head and neck squamous cell carcinoma[J]. J Pathol, 2023, 259(4): 428-440.
doi: 10.1002/path.v259.4 |
[63] |
BOUTILIER A J, ELSAWA S F. Macrophage polarization states in the tumor microenvironment[J]. Int J Mol Sci, 2021, 22(13): 6995.
doi: 10.3390/ijms22136995 |
[64] |
WEI C, YANG C G, WANG S Y, et al. Crosstalk between cancer cells and tumor associated macrophages is required for mesenchymal circulating tumor cell-mediated colorectal cancer metastasis[J]. Mol Cancer, 2019, 18(1): 64.
doi: 10.1186/s12943-019-0976-4 pmid: 30927925 |
[65] |
SHE L, QIN Y X, WANG J C, et al. Tumor-associated macrophages derived CCL18 promotes metastasis in squamous cell carcinoma of the head and neck[J]. Cancer Cell Int, 2018, 18: 120.
doi: 10.1186/s12935-018-0620-1 pmid: 30181713 |
[66] |
GAO L, ZHANG W, ZHONG W Q, et al. Tumor associated macrophages induce epithelial to mesenchymal transition via the EGFR/ERK1/2 pathway in head and neck squamous cell carcinoma[J]. Oncol Rep, 2018, 40(5): 2558-2572.
doi: 10.3892/or.2018.6657 pmid: 30132555 |
[67] |
HU Y, HE M Y, ZHU L F, et al. Tumor-associated macrophages correlate with the clinicopathological features and poor outcomes via inducing epithelial to mesenchymal transition in oral squamous cell carcinoma[J]. J Exp Clin Cancer Res, 2016, 35: 12.
doi: 10.1186/s13046-015-0281-z |
[68] |
SUN H, MIAO C, LIU W, et al. TGF-β1/TβRⅡ/Smad3 signaling pathway promotes VEGF expression in oral squamous cell carcinoma tumor-associated macrophages[J]. Biochem Biophys Res Commun, 2018, 497(2): 583-590.
doi: 10.1016/j.bbrc.2018.02.104 |
[69] |
HU Z W, WEN Y H, MA R Q, et al. Ferroptosis driver SOCS1 and suppressor FTH1 independently correlate with M1 and M2 macrophage infiltration in head and neck squamous cell carcinoma[J]. Front Cell Dev Biol, 2021, 9: 727762.
doi: 10.3389/fcell.2021.727762 |
[70] | MOREIRA D, SAMPATH S, WON H, et al. Myeloid cell-targeted STAT3 inhibition sensitizes head and neck cancers to radiotherapy and T cell-mediated immunity[J]. J Clin Invest, 2021, 131(2): 137001. |
[1] | WANG Zifei, DING Yahui, LI Yan, LUAN Xin, TANG Min. Application of 3D bioprinting in cancer research and tissue engineering [J]. China Oncology, 2024, 34(9): 814-826. |
[2] | WANG Manli, CHEN Hui, DUAN Zhi, XU Qimei, LI Zhen. A study on communication mechanism of lung cancer cells in tumor microenvironment mediated by pleckstrin-2/miR-196a signal axis [J]. China Oncology, 2024, 34(7): 628-638. |
[3] | WANG Xiaocong, LI Ming. The value of single-cell sequencing in oral squamous cell carcinoma research [J]. China Oncology, 2024, 34(5): 501-508. |
[4] | GUO Ye, ZHANG Chenping. Expert consensus on immune checkpoint inhibitors treatment for recurrent/metastatic head and neck squamous cell carcinoma (2024 edition) [J]. China Oncology, 2024, 34(4): 425-438. |
[5] | HUANG He, JU Houyu, YANG Wenyi, YAN Ming, REN Guoxin, HU Jingzhou. Clinical implication of PD-L2 in the prognosis assessment of HNSCC immunotherapy [J]. China Oncology, 2023, 33(6): 613-618. |
[6] | XUE Ying, MAO Yunyu, XU Jianqing. Progress in construction of hypoxia-sensitive CAR-T cell for solid tumor therapy [J]. China Oncology, 2023, 33(1): 71-77. |
[7] | LIU Qiang, FANG Yi, WANG Jing. Application progress of single-cell sequencing technology in breast cancer research [J]. China Oncology, 2022, 32(7): 635-642. |
[8] | SU Jiaqi, XU Wenhao, TIAN Xi, ANWAIE Aihetaimujiang, QU Yuanyuan, SHI Guohai, ZHANG Hailiang, YE Dingwei. New strategies for combined with immunotherapy of clear cell renal cell carcinoma: advances in aerobic glycolysis [J]. China Oncology, 2022, 32(4): 287-297. |
[9] | ZHOU Shukui, ZHANG Dongliang, WANG Xiang, LIU Lei, LI Zeng, YANG Shengke, LIAO Hong. Developing a new animal model of subcutaneous transplanted prostate cancer with cell sheet technology [J]. China Oncology, 2022, 32(3): 200-206. |
[10] | LI Wei, ZHANG Shanling, TAO Yingjie, WANG Xudong. Research status and progress of mechanism of T cell immune metabolism and its application combined with immune checkpoint inhibitor [J]. China Oncology, 2021, 31(7): 640-646. |
[11] | HAN Xiangchen, LI Xiaoguang, HU Xin. Single-cell RNA sequencing and its application in breast cancer [J]. China Oncology, 2021, 31(11): 1110-1114. |
[12] | JIANG Mengyi , LU Yanqiao , WANG Hongxia . Research progress and clinical significance of breast cancer heterogeneity [J]. China Oncology, 2020, 30(5): 394-400. |
[13] | CHEN Ling, ZHAN Xianbao. Advances in immune microenvironment of peritoneal metastatic carcinomaAdvances in immune microenvironment of peritoneal metastatic carcinoma [J]. China Oncology, 2020, 30(4): 305-309. |
[14] | FAN Shouren , WU Shuhua , LI Yangyang , XU Xiaoyang , HE Shuang , WEN Feifei , LIU Liu , GUO Ningjie , JIA Zhenzhen . The correlation between LC3 and tumor-associated macrophages in colorectal cancer and its clinical significance [J]. China Oncology, 2020, 30(11): 849-857. |
[15] | JIN Yujuan, HU Liang, JI Hongbin. Advances in molecular mechanism of lung cancer: from rational to practice [J]. China Oncology, 2020, 30(10): 759-769. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
沪ICP备12009617
Powered by Beijing Magtech Co. Ltd