China Oncology ›› 2022, Vol. 32 ›› Issue (12): 1199-1209.doi: 10.19401/j.cnki.1007-3639.2022.12.008
• Article • Previous Articles Next Articles
CUI Zhongze(), HE Shuang, WEN Feifei, LI Yangyang, XU Xiaoyang, LU Lizhen, WU Shuhua(
)
Received:
2022-04-22
Revised:
2022-10-17
Online:
2022-12-30
Published:
2023-02-02
Contact:
WU Shuhua
Share article
CLC Number:
CUI Zhongze, HE Shuang, WEN Feifei, LI Yangyang, XU Xiaoyang, LU Lizhen, WU Shuhua. Experimental study on influence of autophagy on DPD expression and its effect on chemotherapy with 5-FU in colorectal cancer[J]. China Oncology, 2022, 32(12): 1199-1209.
Fig.1
Levels of autophagy, DPD and drug resistance in colon cancer cells A: Expression level of DPD in different colon cancer cell lines; B: Sensitivity of different cell lines to 5-FU (dose-response curve); C: Expression of LC3, P62 and DPD in HCT-8 and HCT-8/5-FU cells; D: MDC method was used to detect the autophagy level of HCT-8 cells. E: MDC method was used to detect the autophagy level of HCT-8/5-FU cells. F: Incidence of autophagy in HCT-8 and HCT-8/5-FU cells."
Fig.2
MDC staining to detect autophagy levels in different intervention groups A: HCT-8/5-FU cell control group; B: HCT-8/5-FU cell rapamycin intervention group; C: HCT-8/5-FU cells 3-MA intervention group; D: HCT-8/5-FU cells hydroxychloroquine intervention group; E: Autophagy expression rate of HCT-8/5-FU cells in each group; F: HCT-8 cell control group; G: HCT-8 cell rapamycin intervention group; H: HCT-8 cells 3-MA intervention group; I: HCT-8 cell hydroxychloroquine intervention group; J: Autophagy expression rate of HCT-8 cells in each group."
Fig. 3
Changes of autophagy-related proteins and DPD in cells after intervention with autophagy inhibitors and activators A: HCT-8/5-FU cell rapamycin intervention group; B: HCT-8/5-FU cells 3-MA intervention group; C: HCT-8/5-FU cells hydroxychloroquine intervention group; D-E: DPD content after HCT-8 cell intervention; F-G: DPD content after intervention with HCT-8/5-FU cells.RAPA: Rapamycin."
Tab. 1
CCK-8 assay was used to detect the survival rate of HCT-8 and HCT-8/5-FU cell lines after different drug intervention ($\bar{x}\pm s$)"
Variable | Control | Rapamycin | 3-MA | HCQ |
---|---|---|---|---|
HCT-8 | ||||
Autophagy intervention | 100±1.91 | 93.41±0.72 | 92.33±1.11 | 91.21±1.28 |
Combined application of 5-FU and autophagy intervention | 50.00±0.95 | 22.92±2.36* | 45.67±1.98 | 44.42±3.04 |
HCT-8/5-FU | ||||
Autophagy intervention | 100±1.36 | 93.25±1.32 | 92.67±0.90 | 91.57±0.95 |
Combined application of 5-FU and autophagy intervention | 50.00±1.04 | 26.26±1.93* | 46.56±2.26 | 45.72±2.05 |
Fig.4
Plate cloning assay (500 cells/hole) and transwell assay were used to detect the proliferation and invasion ability of HCT-8 cell lines after different interventions A-E: Colony-forming assay. A: 5-FU control group; B: 5-FU + rapamycin group; C: 5-FU + 3-MA group; D: 5-FU + hydroxychloroquine group; E: Incidence of autophagy in HCT-8 cell lines after different interventions; F-I: Cell invasion assay: F: 5-FU control group; G: 5-FU + rapamycin group; H: 5-FU + 3-MA group; I: 5-FU + hydroxychloroquine group; J: Penetration cell number of HCT-8 cell line after different interventions."
Fig. 5
Plate cloning assay (200 cells/hole) and transwell assay were used to detect the proliferation and invasion ability of HCT-8/5-FU cell lines after different interventions Colony-forming assay: A: 5-FU control group; B: 5-FU + rapamycin group; C: 5-FU + 3-MA group; D: 5-FU + hydroxychloroquine group; E: Incidence of autophagy in HCT-8/5-FU cell lines after different interventions Cell invasion assay: F: 5-FU control group; G: 5-FU + rapamycin group; H: 5-FU + 3-MA group; I: 5-FU + hydroxychloroquine group; J: Penetration cell number of HCT-8/FU cell line after different interventions"
[1] |
PATEL S G, KARLITZ J J, YEN T, et al. The rising tide of early-onset colorectal cancer: a comprehensive review of epidemiology, clinical features, biology, risk factors, prevention, and early detection[J]. Lancet Gastroenterol Hepatol, 2022, 7(3): 262-274.
doi: 10.1016/S2468-1253(21)00426-X |
[2] |
BENSON A B, VENOOK A P, AL-HAWARY M M, et al. NCCN guidelines insights: colon cancer, version 2.2018[J]. J Natl Compr Canc Netw, 2018, 16(4): 359-369.
doi: 10.6004/jnccn.2018.0021 |
[3] |
MALIER M, GHARZEDDINE K, LAVERRIERE M H, et al. Hypoxia drives dihydropyrimidine dehydrogenase expression in macrophages and confers chemoresistance in colorectal cancer[J]. Cancer Res, 2021, 81(23): 5963-5976.
doi: 10.1158/0008-5472.CAN-21-1572 pmid: 34645611 |
[4] | DE FALCO V, NATALICCHIO M I, NAPOLITANO S, et al. A case report of a severe fluoropyrimidine-related toxicity due to an uncommon DPYD variant[J]. Medicine, 2019, 98(21): e15759. |
[5] | DEAN L, KANE M. Fluorouracil therapy and DPYD genotype[M]. PRATT V M, SCOTT S A, PIRMOHAMED M, eds. Medical genetics summaries. . Bethesda (MD): National Center for Biotechnology Information (US); November 3, 2016. |
[6] |
贾真真, 何双, 李扬扬, 等. 结直肠癌中DPD与LC3、P62表达的相关性及其临床意义[J]. 中国癌症杂志, 2022, 32(1): 24-33.
doi: 10.19401/j.cnki.1007-3639.2022.01.003 |
JIA Z Z, HE S, LI Y Y, et al. Correlations between expressions of DPD, LC3 and P62 in colorectal cancer and their clinical significance[J]. China Oncol, 2022, 32(1): 24-33. | |
[7] |
YU L, CHEN Y, TOOZE S A. Autophagy pathway: cellular and molecular mechanisms[J]. Autophagy, 2018, 14(2): 207-215.
doi: 10.1080/15548627.2017.1378838 pmid: 28933638 |
[8] |
DIKIC I, ELAZAR Z. Mechanism and medical implications of mammalian autophagy[J]. Nat Rev Mol Cell Biol, 2018, 19(6): 349-364.
doi: 10.1038/s41580-018-0003-4 |
[9] |
ISLAM M A, SOORO M A, ZHANG P H. Autophagic regulation of p62 is critical for cancer therapy[J]. Int J Mol Sci, 2018, 19(5): 1405.
doi: 10.3390/ijms19051405 |
[10] |
JIN H, SEO G S, LEE S H. Isoliquiritigenin-mediated p62/SQSTM1 induction regulates apoptotic potential through attenuation of caspase-8 activation in colorectal cancer cells[J]. Eur J Pharmacol, 2018, 841: 90-97.
doi: S0014-2999(18)30591-0 pmid: 30339814 |
[11] |
LAMARK T, SVENNING S, JOHANSEN T. Regulation of selective autophagy: the p62/SQSTM1 paradigm[J]. Essays Biochem, 2017, 61(6): 609-624.
doi: 10.1042/EBC20170035 pmid: 29233872 |
[12] |
SUN A Q, WEI J, CHILDRESS C, et al. The E3 ubiquitin ligase NEDD4 is an LC3-interactive protein and regulates autophagy[J]. Autophagy, 2017, 13(3): 522-537.
doi: 10.1080/15548627.2016.1268301 pmid: 28085563 |
[13] |
LEVINE B, KROEMER G. Biological functions of autophagy genes: a disease perspective[J]. Cell, 2019, 176(1/2): 11-42.
doi: 10.1016/j.cell.2018.09.048 |
[14] |
BONAM S R, TRANCHANT C, MULLER S. Autophagy-lysosomal pathway as potential therapeutic target in Parkinson's disease[J]. Cells, 2021, 10(12): 3547.
doi: 10.3390/cells10123547 |
[15] |
YANG Y, WANG Q, SONG D J, et al. Lysosomal dysfunction and autophagy blockade contribute to autophagy-related cancer suppressing peptide-induced cytotoxic death of cervical cancer cells through the AMPK/mTOR pathway[J]. J Exp Clin Cancer Res, 2020, 39(1): 197.
doi: 10.1186/s13046-020-01701-z |
[16] | LI J X, LIU G, LI L, et al. Research progress on the effect of autophagy-lysosomal pathway on tumor drug resistance[J]. Exp Cell Res, 2020, 389(2): 111925. |
[17] |
XUAN Y, ZHAO S, XIAO X J, et al. Inhibition of chaperone-mediated autophagy reduces tumor growth and metastasis and promotes drug sensitivity in colorectal cancer[J]. Mol Med Rep, 2021, 23(5): 360.
doi: 10.3892/mmr.2021.11999 |
[18] | YANG J W, ZHANG Q H, LIU T. Autophagy facilitates anticancer effect of 5-fluorouracil in HCT-116 cells[J]. J Cancer Res Ther, 2018, 14(Supplement): S1141-S1147. |
[19] |
TOZER T, HEALE K, MANTO CHAGAS C, et al. Interdomain twists of human thymidine phosphorylase and its active-inactive conformations: binding of 5-FU and its analogues to human thymidine phosphorylase versus dihydropyrimidine dehydrogenase[J]. Chem Biol Drug Des, 2019, 94(5): 1956-1972.
doi: 10.1111/cbdd.13596 pmid: 31356728 |
[20] |
SHARMA V, GUPTA S K, VERMA M. Dihydropyrimidine dehydrogenase in the metabolism of the anticancer drugs[J]. Cancer Chemother Pharmacol, 2019, 84(6): 1157-1166.
doi: 10.1007/s00280-019-03936-w |
[21] |
ZHANG Y H, SHI W N, WU S H, et al. SphK2 confers 5-fluorouracil resistance to colorectal cancer via upregulating H3K56ac-mediated DPD expression[J]. Oncogene, 2020, 39(29): 5214-5227.
doi: 10.1038/s41388-020-1352-y |
[22] | ZHANG Y H, LUO D D, WAN S B, et al. S1PR2 inhibitors potently reverse 5-FU resistance by downregulating DPD expression in colorectal cancer[J]. Pharmacol Res, 2020, 155: 104717. |
[23] |
YOSHII S R, MIZUSHIMA N. Monitoring and measuring autophagy[J]. Int J Mol Sci, 2017, 18(9): 1865.
doi: 10.3390/ijms18091865 |
[24] | OZATES N P, SOĞUTLU F, LERMINOGLU F, et al. Effects of rapamycin and AZD3463 combination on apoptosis, autophagy, and cell cycle for resistance control in breast cancer[J]. Life Sci, 2021, 264: 118643. |
[25] |
ZHANG J, MAO W, LIU Y Y, et al. 3-MA enhanced chemosensitivity in cisplatin resistant hypopharyngeal squamous carcinoma cells via inhibiting beclin-1 mediated autophagy[J]. Curr Pharm Des, 2021, 27(7): 996-1005.
doi: 10.2174/1381612826666201221150431 |
[26] | LIU L Q, WANG S B, SHAO Y F, et al. Hydroxychloroquine potentiates the anti-cancer effect of bevacizumab on glioblastoma via the inhibition of autophagy[J]. Biomedecine Pharmacother, 2019, 118: 109339. |
[27] | ZAMAME RAMIREZ J A, ROMAGNOLI G G, KANENO R. Inhibiting autophagy to prevent drug resistance and improve anti-tumor therapy[J]. Life Sci, 2021, 265: 118745. |
[28] |
LI J, HOU N, FARIED A, et al. Inhibition of autophagy augments 5-fluorouracil chemotherapy in human colon cancer in vitro and in vivo model[J]. Eur J Cancer, 2010, 46(10): 1900-1909.
doi: 10.1016/j.ejca.2010.02.021 pmid: 20231086 |
[29] |
CHOI J H, YOON J S, WON Y W, et al. Chloroquine enhances the chemotherapeutic activity of 5-fluorouracil in a colon cancer cell line via cell cycle alteration[J]. APMIS, 2012, 120(7): 597-604.
doi: 10.1111/j.1600-0463.2012.02876.x |
[30] |
LIU W J, YE L, HUANG W F, et al. p62 links the autophagy pathway and the ubiqutin-proteasome system upon ubiquitinated protein degradation[J]. Cell Mol Biol Lett, 2016, 21: 29.
doi: 10.1186/s11658-016-0031-z pmid: 28536631 |
[31] |
JOHANSEN T, LAMARK T. Selective autophagy mediated by autophagic adapter proteins[J]. Autophagy, 2011, 7(3): 279-296.
doi: 10.4161/auto.7.3.14487 pmid: 21189453 |
[32] |
ZHENG N, SHABEK N. Ubiquitin ligases: Structure, function, and regulation[J]. Annu Rev Biochem, 2017, 86: 129-157.
doi: 10.1146/annurev-biochem-060815-014922 pmid: 28375744 |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
沪ICP备12009617
Powered by Beijing Magtech Co. Ltd