China Oncology ›› 2023, Vol. 33 ›› Issue (10): 945-953.doi: 10.19401/j.cnki.1007-3639.2023.10.007
• Review • Previous Articles Next Articles
YANG Wenbo1(), ZHANG Bin1, WU Jiahui1, CUI Jie2(
)
Received:
2023-06-23
Revised:
2023-09-12
Online:
2023-10-30
Published:
2023-10-31
Contact:
CUI Jie.
Share article
CLC Number:
YANG Wenbo, ZHANG Bin, WU Jiahui, CUI Jie. Current status and treatment direction of the immune microenvironment of castration-resistant prostate cancer[J]. China Oncology, 2023, 33(10): 945-953.
[1] |
SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249.
doi: 10.3322/caac.v71.3 |
[2] |
CHOWDHURY S, BJARTELL A, LUMEN N, et al. Real-world outcomes in first-line treatment of metastatic castration-resistant prostate cancer: the prostate cancer registry[J]. Target Oncol, 2020, 15(3): 301-315.
doi: 10.1007/s11523-020-00720-2 pmid: 32500294 |
[3] |
TURCO F, GILLESSEN S, CATHOMAS R, et al. Treatment landscape for patients with castration-resistant prostate cancer: patient selection and unmet clinical needs[J]. Res Rep Urol, 2022, 14: 339-350.
doi: 10.2147/RRU.S360444 pmid: 36199275 |
[4] | 王晨晨, 杜朝, 郭学玲, 等. 基于肿瘤相关巨噬细胞为靶点的纳米载药体系在癌症治疗中的研究进展[J]. 肿瘤防治研究, 2021, 48(3): 307-313. |
WANG C C, DU C, GUO X L, et al. Research progress of nano-drug delivery system targeting tumor-associated macrophage in cancer treatment[J]. Cancer Res Prev Treat, 2021, 48(3): 307-313. | |
[5] | XIANG X, WANG J, LU D, et al. Targeting tumor-associated macrophages to synergize tumor immunotherapy[J/OL]. Signal Transduct Targeted Ther, 2021, 6(1): 75. |
[6] | HAN C L, DENG Y X, XU W C, et al. The roles of tumor-associated macrophages in prostate cancer[J]. J Oncol, 2022, 2022: 1-20. |
[7] |
GUAN W, LI F, ZHAO Z, et al. Tumor-associated macrophage promotes the survival of cancer cells upon docetaxel chemotherapy via the CSF1/CSF1R-CXCL12/CXCR4 axis in castration-resistant prostate cancer[J]. Genes (Basel), 2021, 12(5): 773.
doi: 10.3390/genes12050773 |
[8] |
WU T Q, WANG W F, SHI G H, et al. Targeting HIC1/TGF-β axis-shaped prostate cancer microenvironment restrains its progression[J]. Cell Death Dis, 2022, 13(7): 624.
doi: 10.1038/s41419-022-05086-z pmid: 35853880 |
[9] |
HANLING, WANG. Antiandrogen treatment induces stromal cell reprogramming to promote castration resistance in prostate cancer[J]. Cancer Cell, 2023, 41(7): 1345-1362.e9.
doi: 10.1016/j.ccell.2023.05.016 |
[10] |
EIRO N, FERNÁNDEZ-GÓMEZ J M, GONZALEZ-RUIZ DE LEÓN C, et al. Gene expression profile of stromal factors in cancer-associated fibroblasts from prostate cancer[J]. Diagnostics, 2022, 12(7): 1605.
doi: 10.3390/diagnostics12071605 |
[11] |
ZHANG Z D, KARTHAUS W R, LEE Y S, et al. Tumor microenvironment-derived NRG1 promotes antiandrogen resistance in prostate cancer[J]. Cancer Cell, 2020, 38(2): 279-296.e9.
doi: 10.1016/j.ccell.2020.06.005 |
[12] |
SANAEI M J, SALIMZADEH L, BAGHERI N. Crosstalk between myeloid-derived suppressor cells and the immune system in prostate cancer[J]. J Leukoc Biol, 2020, 107(1): 43-56.
doi: 10.1002/JLB.4RU0819-150RR |
[13] |
CALCINOTTO A, SPATARO C, ZAGATO E, et al. IL-23 secreted by myeloid cells drives castration-resistant prostate cancer[J]. Nature, 2018, 559(7714): 363-369.
doi: 10.1038/s41586-018-0266-0 |
[14] |
FAN L, XU G, CAO J, et al. Type Ⅰ interferon promotes antitumor T cell response in CRPC by regulating MDSC[J]. Cancers (Basel), 2021, 13(21): 5574.
doi: 10.3390/cancers13215574 |
[15] |
PAL S, MOREIRA D, WON H, et al. Reduced T-cell numbers and elevated levels of immunomodulatory cytokines in metastatic prostate cancer patients de novo resistant to abiraterone and/or enzalutamide therapy[J]. Int J Mol Sci, 2019, 20(8): 1831.
doi: 10.3390/ijms20081831 |
[16] |
GOTTHARDT D, TRIFINOPOULOS J, SEXL V, et al. JAK/STAT cytokine signaling at the crossroad of NK cell development and maturation[J]. Front Immunol, 2019, 10: 2590.
doi: 10.3389/fimmu.2019.02590 pmid: 31781102 |
[17] |
XIN P, XU X Y, DENG C J, et al. The role of JAK/STAT signaling pathway and its inhibitors in diseases[J]. Int Immunopharmacol, 2020, 80: 106210.
doi: 10.1016/j.intimp.2020.106210 |
[18] | 彭广. 肿瘤与肿瘤微环境间调控环路促进前列腺癌抗雄治疗耐药和骨转移的机制研究[D]. 上海: 中国人民解放军海军军医大学. 2021. |
PENG G. Mechanism of the regulatory loop between tumors and tumor microenvironment promoting resistance to androgenic therapy and bone metastasis in prostate cancer[D]. Shanghai: Naval Medical University of the People's Liberation Army of China. 2021. | |
[19] | 龙星博. 雄激素剥夺治疗对前列腺癌免疫微环境的影响以及相关机制的研宄[D]. 北京协和医学院. 2022. |
LONG X B. Research on the effects and related mechanisms of androgen deprivation therapy on the immune microenvironment of prostate cancer[D]. Beijing Union Medical College. 2022. | |
[20] |
PENG G, WANG C, WANG H R, et al. Gankyrin-mediated interaction between cancer cells and tumor-associated macrophages facilitates prostate cancer progression and androgen deprivation therapy resistance[J]. Oncoimmunology, 2023, 12(1): 2173422.
doi: 10.1080/2162402X.2023.2173422 |
[21] |
ZHONG S W, HUANG C H, CHEN Z K, et al. Targeting inflammatory signaling in prostate cancer castration resistance[J]. J Clin Med, 2021, 10(21): 5000.
doi: 10.3390/jcm10215000 |
[22] |
XU P, YANG J C, CHEN B, et al. Androgen receptor blockade resistance with enzalutamide in prostate cancer results in immunosuppressive alterations in the tumor immune microenvironment[J]. J Immunother Cancer, 2023, 11(5): e006581.
doi: 10.1136/jitc-2022-006581 |
[23] |
GUAN X N, POLESSO F, WANG C J, et al. Androgen receptor activity in T cells limits checkpoint blockade efficacy[J]. Nature, 2022, 606(7915): 791-796.
doi: 10.1038/s41586-022-04522-6 |
[24] |
RUIZ DE PORRAS V, PARDO J C, NOTARIO L, et al. Immune checkpoint inhibitors: a promising treatment option for metastatic castration-resistant prostate cancer?[J]. Int J Mol Sci, 2021, 22(9): 4712.
doi: 10.3390/ijms22094712 |
[25] |
TANG M, GAO S, ZHANG L, et al. Docetaxel suppresses immunotherapy efficacy of natural killer cells toward castration-resistant prostate cancer cells via altering androgen receptor-lectin-like transcript 1 signals[J]. Prostate, 2020, 80(10): 742-752.
doi: 10.1002/pros.23988 pmid: 32449811 |
[26] | 王增增, 徐勇. 125I粒子植入放疗对前列腺癌免疫微环境影响的初步分析[J]. 临床泌尿外科杂志, 2022, 37(4): 261-267. |
WANG Z Z, XU Y. Effect of iodine-125 brachytherapy in prostate cancer on immune microenvironment[J]. J Clin Urol, 2022, 37(4): 261-267. | |
[27] | WU C T, CHEN W C, CHEN M F. The response of prostate cancer to androgen deprivation and irradiation due to immune modulation[J]. Cancers (Basel), 2018, 11(1): E20. |
[28] |
HERRERA F G, RONET C, DE OLZA M O, et al. Low-dose radiotherapy reverses tumor immune desertification and resistance to immunotherapy[J]. Cancer Discov, 2022, 12(1): 108-133.
doi: 10.1158/2159-8290.CD-21-0003 |
[29] |
JIAO S P, SUBUDHI S K, APARICIO A, et al. Differences in tumor microenvironment dictate T helper lineage polarization and response to immune checkpoint therapy[J]. Cell, 2019, 179(5): 1177-1190.e13.
doi: S0092-8674(19)31179-1 pmid: 31730856 |
[30] |
HANSEN A R, MASSARD C, OTT P A, et al. Pembrolizumab for advanced prostate adenocarcinoma: findings of the KEYNOTE-028 study[J]. Ann Oncol, 2018, 29(8): 1807-1813.
doi: S0923-7534(19)34146-8 pmid: 29992241 |
[31] | ANTONARAKIS E S, PIULATS J M, GROSS-GOUPIL M, et al. Pembrolizumab for treatment-refractory metastatic castration-resistant prostate cancer: multicohort, open-label phase Ⅱ KEYNOTE-199 study[J]. J Clin Oncol, 2020, 38(5): 395-405. |
[32] |
ZHANG W, SHI X, CHEN R, et al. Novel long non-coding RNA lncAMPC promotes metastasis and immunosuppression in prostate cancer by stimulating LIF/LIFR expression[J]. Mol Ther, 2020, 28(11): 2473-2487.
doi: 10.1016/j.ymthe.2020.06.013 pmid: 32592689 |
[33] |
RINCHAI D, VERZONI E, HUBER V, et al. Integrated transcriptional-phenotypic analysis captures systemic immunomodulation following antiangiogenic therapy in renal cell carcinoma patients[J]. Clin Transl Med, 2021, 11(6): e434.
doi: 10.1002/ctm2.434 pmid: 34185403 |
[34] |
AGARWAL N, AZAD A, CARLES J, et al. A phase Ⅲ, randomized, open-label study (CONTACT-02) of cabozantinib plus atezolizumab versus second novel hormone therapy in patients with metastatic castration-resistant prostate cancer[J]. Future Oncol, 2022, 18(10): 1185-1198.
doi: 10.2217/fon-2021-1096 |
[35] | BEER T M, KWON E D, DRAKE C G, et al. Randomized, double-blind, phase Ⅲ trial of ipilimumab versus placebo in asymptomatic or minimally symptomatic patients with metastatic chemotherapy-naive castration-resistant prostate cancer[J]. J Clin Oncol, 2017, 35(1): 40-47. |
[36] |
FIZAZI K, DRAKE C G, BEER T M, et al. Final analysis of the ipilimumab versus placebo following radiotherapy phase Ⅲ trial in postdocetaxel metastatic castration-resistant prostate cancer identifies an excess of long-term survivors[J]. Eur Urol, 2020, 78(6): 822-830.
doi: 10.1016/j.eururo.2020.07.032 |
[37] |
GAO J J, WARD J F, PETTAWAY C A, et al. VISTA is an inhibitory immune checkpoint that is increased after ipilimumab therapy in patients with prostate cancer[J]. Nat Med, 2017, 23(5): 551-555.
doi: 10.1038/nm.4308 pmid: 28346412 |
[38] |
SUBUDHI S K, SIDDIQUI B A, APARICIO A M, et al. Combined CTLA-4 and PD-L1 blockade in patients with chemotherapy-naïve metastatic castration-resistant prostate cancer is associated with increased myeloid and neutrophil immune subsets in the bone microenvironment[J]. J Immunother Cancer, 2021, 9(10): e002919.
doi: 10.1136/jitc-2021-002919 |
[39] |
AHERN E, HARJUNPÄÄ H, O'DONNELL J S, et al. RANKL blockade improves efficacy of PD1-PD-L1 blockade or dual PD1-PD-L1 and CTLA4 blockade in mouse models of cancer[J]. Oncoimmunology, 2018, 7(6): e1431088.
doi: 10.1080/2162402X.2018.1431088 |
[40] | 吕金星. 转移性去势抵抗性前列腺癌患者醋酸阿比特龙初始治疗耐药预测因素分析[D]. 福州: 福建医科大学. |
LÜ J X. Analysis of predictive factors for initial treatment resistance of patients with metastatic castration resistant prostate cancer to abiolone acetate[D]. Fuzhou: Fujian Medical University. | |
[41] |
ANTONARAKIS E S, SMALL E J, PETRYLAK D P, et al. Antigen-specific CD8 lytic phenotype induced by sipuleucel-T in hormone-sensitive or castration-resistant prostate cancer and association with overall survival[J]. Clin Cancer Res, 2018, 24(19): 4662-4671.
doi: 10.1158/1078-0432.CCR-18-0638 pmid: 29858218 |
[42] |
MOLLICA V, MARCHETTI A, ROSELLINI M, et al. An insight on novel molecular pathways in metastatic prostate cancer: a focus on DDR, MSI and AKT[J]. Int J Mol Sci, 2021, 22(24): 13519.
doi: 10.3390/ijms222413519 |
[43] |
PACHYNSKI R K, MORISHIMA C, SZMULEWITZ R, et al. IL-7 expands lymphocyte populations and enhances immune responses to sipuleucel-T in patients with metastatic castration-resistant prostate cancer (mCRPC)[J]. J Immunother Cancer, 2021, 9(8): e002903.
doi: 10.1136/jitc-2021-002903 |
[44] |
HOLSTEIN S A, LUNNING M A. CAR T-cell therapy in hematologic malignancies: a voyage in progress[J]. Clin Pharmacol Ther, 2020, 107(1): 112-122.
doi: 10.1002/cpt.1674 pmid: 31622496 |
[45] |
JIANG Y, WEN W H, YANG F, et al. Prospect of prostate cancer treatment: armed CAR-T or combination therapy[J]. Cancers, 2022, 14(4): 967.
doi: 10.3390/cancers14040967 |
[46] | WU L Y, LIU F, YIN L, et al. The establishment of polypeptide PSMA-targeted chimeric antigen receptor-engineered natural killer cells for castration-resistant prostate cancer and the induction of ferroptosis-related cell death[J]. Cancer Commun (Lond), 2022, 42(8): 768-783. |
[47] |
WANG F, WU L, YIN L, et al. Combined treatment with anti-PSMA CAR NK-92 cell and anti-PD-L1 monoclonal antibody enhances the antitumour efficacy against castration-resistant prostate cancer[J]. Clin Transl Med, 2022, 12(6): e901.
doi: 10.1002/ctm2.901 pmid: 35696531 |
[48] |
WANG G, LIU Y, LIU S, et al. Oncolyic viro therapy for prostate cancer: lighting a fire in winter[J]. Int J Mol Sci, 2022, 23(20): 12647.
doi: 10.3390/ijms232012647 |
[49] |
中国临床肿瘤学会免疫治疗专家委员会, 上海市抗癌协会肿瘤生物治疗专业委员会. 基因重组溶瘤腺病毒治疗恶性肿瘤临床应用中国专家共识(2022年版)[J]. 中国癌症杂志, 2023, 33(5): 527-548.
doi: 10.19401/j.cnki.1007-3639.2023.05.013 |
Expert Committee on Immunotherapy of Chinese Society of Clinical Oncology, Professional Committee on Cancer Biotherapy of Shanghai Anticancer Association. Chinese expert consensus on clinical application of recombinant oncolytic adenovirus in the treatment of malignant tumors[J]. China Oncol, 2023, 33(5): 527-548. | |
[50] |
DARIANE C, TIMSIT M O. DNA-damage-repair gene alterations in genitourinary malignancies[J]. Eur Surg Res, 2023, 63(4): 155-164.
doi: 10.1159/000526415 |
[51] |
YU E Y, PIULATS J M, GRAVIS G, et al. Pembrolizumab plus olaparib in patients with metastatic castration-resistant prostate cancer: long-term results from the phase 1b/2 KEYNOTE-365 cohort A study[J]. Eur Urol, 2023, 83(1): 15-26.
doi: 10.1016/j.eururo.2022.08.005 |
[1] | Committee of Integrated Rehabilitation for Urogenital Tumors, Chinese Anti-Cancer Association. Chinese expert consensus on perioperative integrated rehabilitation for radical prostatectomy (2024 edition) [J]. China Oncology, 2024, 34(9): 890-902. |
[2] | PAN Jian, YE Dingwei, ZHU Yao, WANG Beihe. Correlation analysis of PSMA PET/CT-derived parameters and circulating tumor DNA features in patients with hormone-sensitive prostate cancer [J]. China Oncology, 2024, 34(7): 680-685. |
[3] | Cancer Nuclear Medicine Committee of China Anti-Cancer Association, Chinese Association of Nuclear Medicine Physicians. Expert consensus of 177Lu-labeled PSMA radioligand therapy for clinical practice of prostate cancer (2024 edition) [J]. China Oncology, 2024, 34(7): 702-714. |
[4] | LI Xinran, LIANG Yiyi, TU Hong. Research progress of the intratumoral microbiome [J]. China Oncology, 2023, 33(9): 866-873. |
[5] | YANG Wenxiao, GUO Linwei, LING Hong, HU Xin. Characterization of immune microenvironment identifies prognostic and immunotherapy benefit for trastuzumab-based therapy [J]. China Oncology, 2023, 33(5): 484-498. |
[6] | PAN Jian, ZHU Yao, DAI Bo, YE Dingwei. Advances in basic research, clinical diagnosis and treatment of prostate cancer in 2022 [J]. China Oncology, 2023, 33(3): 210-217. |
[7] | Society of Male Reproductive System Oncology, China Anti-Cancer Association. Expert consensus on perioperative comprehensive treatment for high risk prostate cancer (2023 edition) [J]. China Oncology, 2023, 33(12): 1204-1214. |
[8] | ZHOU Shukui, ZHANG Dongliang, WANG Xiang, LIU Lei, LI Zeng, YANG Shengke, LIAO Hong. Developing a new animal model of subcutaneous transplanted prostate cancer with cell sheet technology [J]. China Oncology, 2022, 32(3): 200-206. |
[9] | ZHOU Bingni, LIU Xiaohang, GU Bingxin, ZHOU Liangping, GU Yajia. The value of mpMRI combined with 99mTc-PSMA SPECT/CT in the detection of significant residual prostate cancer after neoadjuvant androgen deprivation therapy [J]. China Oncology, 2022, 32(2): 134-141. |
[10] | Chinese Prostate Cancer Consortium (CPCC), YE Dingwei, HUANG Jian. Chinese Prostate Cancer Consortium (CPCC) Chinese expert consensus on advanced prostate cancer: clinical management of patients with metastatic hormone-sensitive prostate cancer treated by initial novel hormone therapy (2022 edition) [J]. China Oncology, 2022, 32(12): 1242-1258. |
[11] | XU Wenhao, TIAN Xi, Aihetaimujiang·Anwaier , QU Yuanyuan, SHI Guohai, ZHANG Hailiang, YE Dingwei. A systematic review of current advancements of artificial intelligence in genitourinary cancers [J]. China Oncology, 2022, 32(1): 68-74. |
[12] | WEI Yu , ZHANG Tingwei , HE Yi , LI Jun , BI Jianbin , ZENG Yu , WAN Lijun , WU Gaoliang , WANG Huansheng , ZHANG Jun , ZHU Wei , QU Yuanyuan , ZHU Yao , YE Dingwei . Preliminary study on efficacy and safety of fluzoparib in patients with metastatic castration-resistant prostate cancer [J]. China Oncology, 2021, 31(7): 561-566. |
[13] | CAO Dalong, ZHU Wenkai, SHI Guohai, ZHANG Hailiang, WANG Ziliang, YE Dingwei. The influence of PRUNE2 gene point mutation on proliferation, apoptosis, invasion and migration of prostate cancer DU145 cells [J]. China Oncology, 2021, 31(6): 441-446. |
[14] | WANG Zhu, ZHANG Ying, ZHANG Jianwen, DENG Qiong, LIANG Hui. Nuclear receptor HNF4α promotes castration-resistant prostate cancer via its regulation of androgen receptor expression [J]. China Oncology, 2021, 31(3): 170-175. |
[15] | BIAN Xiaojie, YE Dingwei. New ideas of androgen deprivation therapy for prostate cancer: new progress in clinical research of testosterone maximum control [J]. China Oncology, 2021, 31(12): 1209-1214. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
沪ICP备12009617
Powered by Beijing Magtech Co. Ltd