China Oncology ›› 2022, Vol. 32 ›› Issue (1): 68-74.doi: 10.19401/j.cnki.1007-3639.2022.01.009
• Review • Previous Articles Next Articles
XU Wenhao, TIAN Xi, Aihetaimujiang·Anwaier (), QU Yuanyuan, SHI Guohai, ZHANG Hailiang, YE Dingwei(
)
Received:
2021-07-07
Revised:
2021-09-23
Online:
2022-01-30
Published:
2022-01-30
Contact:
YE Dingwei
E-mail:dwyelie@163.com
Share article
CLC Number:
XU Wenhao, TIAN Xi, Aihetaimujiang·Anwaier , QU Yuanyuan, SHI Guohai, ZHANG Hailiang, YE Dingwei. A systematic review of current advancements of artificial intelligence in genitourinary cancers[J]. China Oncology, 2022, 32(1): 68-74.
[1] |
YOU W P, HENNEBERG M. Cancer incidence increasing globally: the role of relaxed natural selection[J]. Evol Appl, 2018, 11(2): 140-152.
doi: 10.1111/eva.2018.11.issue-2 |
[2] |
TROGDON J G, FALCHOOK A D, BASAK R, et al. Total medicare costs associated with diagnosis and treatment of prostate cancer in elderly men[J]. JAMA Oncol, 2019, 5(1): 60-66.
doi: 10.1001/jamaoncol.2018.3701 |
[3] | ADIR O, POLEY M, CHEN G, et al. Integrating artificial intelligence and nanotechnology for precision cancer medicine[J]. Adv Mater, 2020, 32(13): e1901989. |
[4] | GALMARINI C M, LUCIUS M. Artificial intelligence: a disruptive tool for a smarter medicine[J]. Eur Rev Med Pharmacol Sci, 2020, 24(13): 7462-7474. |
[5] |
HAMAMOTO R, SUVARNA K, YAMADA M, et al. Application of artificial intelligence technology in oncology: towards the establishment of precision medicine[J]. Cancers (Basel), 2020, 12(12): 3532-3564.
doi: 10.3390/cancers12123532 |
[6] |
HUNSBERGER J, SIMON C, ZYLBERBERG C, et al. Improving patient outcomes with regenerative medicine: how the regenerative medicine manufacturing society plans to move the needle forward in cell manufacturing, standards, 3D bioprinting, artificial intelligence-enabled automation, education, and training[J]. Stem Cells Transl Med, 9(7): 728-733.
doi: 10.1002/sctm.19-0389 |
[7] |
IQBAL U, CELI L A, LI Y J. How can artificial intelligence make medicine more preemptive?[J]. J Med Internet Res, 2020, 22(8): e17211.
doi: 10.2196/17211 |
[8] | KAR A, SUBASH A, RAO V U S. Reactive artificial intelligence using big data in the era of precision medicine[J]. JAMA Surg, 2020, 155(7): 671. |
[9] |
KAUL V, ENSLIN S, GROSS S A. History of artificial intelligence in medicine[J]. Gastrointest Endosc, 2020, 92(4): 807-812.
doi: 10.1016/j.gie.2020.06.040 |
[10] |
LANGLOTZ C P, ALLEN B, ERICKSON B J, et al. A roadmap for foundational research on artificial intelligence in medical imaging: from the 2018 NIH/RSNA/ACR/the academy workshop[J]. Radiology, 2019, 291(3): 781-791.
doi: 10.1148/radiol.2019190613 |
[11] |
GOLDENBERG S L, NIR G, SALCUDEAN S E. A new era: artificial intelligence and machine learning in prostate cancer[J]. Nat Rev Urol, 2019, 16(7): 391-403.
doi: 10.1038/s41585-019-0193-3 |
[12] |
OLCZAK J, FAHLBERG N, MAKI A, et al. Artificial intelligence for analyzing orthopedic trauma radiographs[J]. Acta Orthop, 2017, 88(6): 581-586.
doi: 10.1080/17453674.2017.1344459 |
[13] | BI W L, HOSNY A, SCHABATH M B, et al. Artificial intelligence in cancer imaging: clinical challenges and applications[J]. CA Cancer J Clin, 2019, 69(2): 127-157. |
[14] |
CHEN P H C, GADEPALLI K, MACDONALD R, et al. An augmented reality microscope with real-time artificial intelligence integration for cancer diagnosis[J]. Nat Med, 2019, 25(9): 1453-1457.
doi: 10.1038/s41591-019-0539-7 |
[15] |
BAGHERI M H, AHLMAN M A, LINDENBERG L, et al. Advances in medical imaging for the diagnosis and management of common genitourinary cancers[J]. Urol Oncol, 2017, 35(7): 473-491.
doi: 10.1016/j.urolonc.2017.04.014 |
[16] |
HEMAL A K, MENON M. Robotics in urology[J]. Curr Opin Urol, 2004, 14(2): 89-93.
doi: 10.1097/00042307-200403000-00007 |
[17] |
MAMDANI M, SLUTSKY A S. Artificial intelligence in intensive care medicine[J]. Intensive Care Med, 2021, 47(2): 147-149.
doi: 10.1007/s00134-020-06203-2 |
[18] |
FRANZMEIER N, KOUTSOULERIS N, BENZINGER T, et al. Predicting sporadic Alzheimer’s disease progression via inherited Alzheimer’s disease-informed machine-learning[J]. Alzheimers Dement, 2020, 16(3): 501-511.
doi: 10.1002/alz.v16.3 |
[19] |
GOULD M K, HUANG B Z, TAMMEMAGI M C, et al. Machine learning for early lung cancer identification using routine clinical and laboratory data[J]. Am J Respir Crit Care Med, 2021, 204(4): 445-453.
doi: 10.1164/rccm.202007-2791OC |
[20] |
AUFFENBERG G B, GHANI K R, RAMANI S, et al. AskMUSIC: leveraging a clinical registry to develop a new machine learning model to inform patients of prostate cancer treatments chosen by similar men[J]. Eur Urol, 2019, 75(6): 901-907.
doi: 10.1016/j.eururo.2018.09.050 |
[21] |
LEE C I, HOUSSAMI N, ELMORE J G, et al. Pathways to breast cancer screening artificial intelligence algorithm validation[J]. Breast, 2020, 52: 146-149.
doi: 10.1016/j.breast.2019.09.005 |
[22] |
POORTMANS P M P, TAKANEN S, MARTA G N, et al. Winter is over: the use of artificial intelligence to individualise radiation therapy for breast cancer[J]. Breast, 2020, 49: 194-200.
doi: 10.1016/j.breast.2019.11.011 |
[23] |
BIBAULT J E, GIRAUD P, BURGUN A. Big Data and machine learning in radiation oncology: state of the art and future prospects[J]. Cancer Lett, 2016, 382(1): 110-117.
doi: 10.1016/j.canlet.2016.05.033 |
[24] |
LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436-444.
doi: 10.1038/nature14539 |
[25] |
REEL P S, REEL S, PEARSON E, et al. Using machine learning approaches for multi-omics data analysis: a review[J]. Biotechnol Adv, 2021, 49: 107739-107763.
doi: 10.1016/j.biotechadv.2021.107739 |
[26] |
SIMON G, DINARDO C D, TAKAHASHI K, et al. Applying artificial intelligence to address the knowledge gaps in cancer care[J]. Oncologist, 2019, 24(6): 772-782.
doi: 10.1634/theoncologist.2018-0257 |
[27] |
DE SILVA D, RANASINGHE W, BANDARAGODA T, et al. Machine learning to support social media empowered patients in cancer care and cancer treatment decisions[J]. PLoS One, 2018, 13(10): e0205855.
doi: 10.1371/journal.pone.0205855 |
[28] |
NISSAN N, ALLWEIS T, MENES T, et al. Breast MRI during lactation: effects on tumor conspicuity using dynamic contrast-enhanced (DCE) in comparison with diffusion tensor imaging (DTI) parametric maps[J]. Eur Radiol, 2020, 30(2): 767-777.
doi: 10.1007/s00330-019-06435-x |
[29] |
LI C, WANG S, YAN J L, et al. Characterizing tumor invasiveness of glioblastoma using multiparametric magnetic resonance imaging[J]. J Neurosurg, 2019, 132(5): 1465-1472.
doi: 10.3171/2018.12.JNS182926 |
[30] | PAPAGNO C, MATTAVELLI G, CASAROTTI A, et al. Defective recognition and naming of famous people from voice in patients with unilateral temporal lobe tumours[J]. Neuropsychologia, 2018, 116(Pt B): 194-204. |
[31] | SHAO F, HUANG Q, WANG C, et al. Artificial neural networking model for the prediction of early occlusion of bilateral plastic stent placement for inoperable hilar cholangiocarcinoma[J]. Surg Laparosc Endosc Percutan Tech, 2018, 28(2): e54-e58. |
[32] |
REHER R, KIM H W, ZHANG C, et al. A convolutional neural network-based approach for the rapid annotation of molecularly diverse natural products[J]. J Am Chem Soc, 2020, 142(9): 4114-4120.
doi: 10.1021/jacs.9b13786 |
[33] |
ALBERTSEN P C. Patient decision-making: where are we going?[J]. Eur Urol, 2019, 75(6): 908-909.
doi: 10.1016/j.eururo.2018.10.024 |
[34] | ARVANITI E, FRICKER K S, MORET M, et al. Automated Gleason grading of prostate cancer tissue microarrays via deep learning[J]. Sci Rep, 2018, 13(1): 12054-12064. |
[35] |
LUCAS M, JANSEN I, SAVCI-HEIJINK C D, et al. Deep learning for automatic Gleason pattern classification for grade group determination of prostate biopsies[J]. Virchows Arch, 2019, 475(1): 77-83.
doi: 10.1007/s00428-019-02577-x |
[36] | FEHR D, VEERARAGHAVAN H, WIBMER A, et al. Automatic classification of prostate cancer Gleason scores from multiparametric magnetic resonance images[J]. Proc Natl Acad Sci USA, 2015, 112(46): E6265-E6273. |
[37] |
NAYAN M, SALARI K, BOZZO A, et al. Predicting survival after radical prostatectomy: variation of machine learning performance by race[J]. Prostate, 2021, 81(16): 1355-1364.
doi: 10.1002/pros.v81.16 |
[38] |
ZHU Y, MO M, WEI Y, et al. Epidemiology and genomics of prostate cancer in Asian men[J]. Nat Rev Urol, 2021, 18(5): 282-301.
doi: 10.1038/s41585-021-00442-8 |
[39] | 叶定伟. 守正创新, 笃行致远: 中国前列腺癌诊治历程回顾与展望[J]. 中华泌尿外科杂志, 2020, 41(11): 801-806. |
YE D W. Keeping integrity and innovation, striving for the future: retrospect and prospect of diagnosis and treatment of prostate cancer in China[J]. Chin J Urol, 2020(11): 801-806. | |
[40] |
ROSSI S H, KLATTE T, USHER-SMITH J, et al. Epidemiology and screening for renal cancer[J]. World J Urol, 2018, 36(9): 1341-1353.
doi: 10.1007/s00345-018-2286-7 |
[41] |
HAN S, HWANG S I, LEE H J. The classification of renal cancer in 3-phase CT images using a deep learning method[J]. J Digit Imaging, 2019, 32(4): 638-643.
doi: 10.1007/s10278-019-00230-2 |
[42] |
HOLDBROOK D A, HUBER R G, MARZINEK J K, et al. Multiscale modeling of innate immune receptors: endotoxin recognition and regulation by host defense peptides[J]. Pharmacol Res, 2019, 147: 104372-104377.
doi: 10.1016/j.phrs.2019.104372 |
[43] | DREICER R. Tyrosine kinase inhibitors compared with cytokine therapy for metastatic renal cell carcinoma: overview of recent clinical trials differentiating clinical response and adverse effects[J]. Clin Genitourin Cancer, 2006, 5(Suppl 1): S19-S23. |
[44] |
UHLIG J, LEHA A, DELONGE L M, et al. Radiomic features and machine learning for the discrimination of renal tumor histological subtypes: a pragmatic study using clinical-routine computed tomography[J]. Cancers (Basel), 2020, 12(10): 2010-2012.
doi: 10.3390/cancers12082010 |
[45] |
BUCHNER A, KENDLBACHER M, NUHN P, et al. Outcome assessment of patients with metastatic renal cell carcinoma under systemic therapy using artificial neural networks[J]. Clin Genitourin Cancer, 2012, 10(1): 37-42.
doi: 10.1016/j.clgc.2011.10.001 |
[46] | MA C G, XU W H, XU Y, et al. Identification and validation of novel metastasis-related signatures of clear cell renal cell carcinoma using gene expression databases[J]. Am J Transl Res, 2020, 12(8): 4108-4126. |
[47] | XU W H, XU Y, WANG J, et al. Prognostic value and immune infiltration of novel signatures in clear cell renal cell carcinoma microenvironment[J]. Aging (Albany NY), 2019, 11(17): 6999-7020. |
[48] |
BRAUN D A, HOU Y, BAKOUNY Z, et al. Interplay of somatic alterations and immune infiltration modulates response to PD-1 blockade in advanced clear cell renal cell carcinoma[J]. Nat Med, 2020, 26(6): 909-918.
doi: 10.1038/s41591-020-0839-y |
[49] |
SMITH C C, CHAI S, WASHINGTON A R, et al. Machine-learning prediction of tumor antigen immunogenicity in the selection of therapeutic epitopes[J]. Cancer Immunol Res, 2019, 7(10): 1591-1604.
doi: 10.1158/2326-6066.CIR-19-0155 |
[50] |
JIANG P, GU S Q, PAN D, et al. Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response[J]. Nat Med, 2018, 24(10): 1550-1558.
doi: 10.1038/s41591-018-0136-1 |
[51] |
XU W H, XU Y, TIAN X, et al. Large-scale transcriptome profiles reveal robust 20-signatures metabolic prediction models and novel role of G6PC in clear cell renal cell carcinoma[J]. J Cell Mol Med, 2020, 24(16): 9012-9027.
doi: 10.1111/jcmm.v24.16 |
[52] |
XU W, TIAN X, LIU W, et al. m6A regulator-mediated methylation modification model predicts prognosis, tumor microenvironment characterizations and response to immunotherapies of clear cell renal cell carcinoma[J]. Front Oncol, 2021, 11: 709579-709590.
doi: 10.3389/fonc.2021.709579 |
[53] |
MALATS N, REAL F X. Epidemiology of bladder cancer[J]. Hematol Clin N Am, 2015, 29(2): 177-189.
doi: 10.1016/j.hoc.2014.10.001 |
[54] | EMINAGA O, EMINAGA N, SEMJONOW A, et al. Diagnostic classification of cystoscopic images using deep convolutional neural networks[J]. JCO Clin Cancer Inform, 2018, 2: 1-8. |
[55] |
GARAPATI S S, HADJIISKI L, CHA K H, et al. Urinary bladder cancer staging in CT urography using machine learning[J]. Med Phys, 2017, 44(11): 5814-5823.
doi: 10.1002/mp.2017.44.issue-11 |
[56] |
CHA K H, HADJIISKI L, CHAN H P, et al. Bladder cancer treatment response assessment in CT using radiomics with deep-learning[J]. Sci Rep, 2017, 7(1): 1-12.
doi: 10.1038/s41598-016-0028-x |
[1] | TAN Hong, LIN Shenggeng, XIONG Yi. Current status and challenges of artificial intelligence-enabled prediction of synergistic cancer drug combinations [J]. China Oncology, 2024, 34(9): 807-813. |
[2] | Committee of Integrated Rehabilitation for Urogenital Tumors, Chinese Anti-Cancer Association. Chinese expert consensus on perioperative integrated rehabilitation for radical prostatectomy (2024 edition) [J]. China Oncology, 2024, 34(9): 890-902. |
[3] | PAN Jian, YE Dingwei, ZHU Yao, WANG Beihe. Correlation analysis of PSMA PET/CT-derived parameters and circulating tumor DNA features in patients with hormone-sensitive prostate cancer [J]. China Oncology, 2024, 34(7): 680-685. |
[4] | Cancer Nuclear Medicine Committee of China Anti-Cancer Association, Chinese Association of Nuclear Medicine Physicians. Expert consensus of 177Lu-labeled PSMA radioligand therapy for clinical practice of prostate cancer (2024 edition) [J]. China Oncology, 2024, 34(7): 702-714. |
[5] | JIANG Tiaoyan, JIA Tianying, ZHANG Qin. Contrast-enhanced computed tomography-based radiomics models for the risk categorization of thymoma [J]. China Oncology, 2024, 34(6): 581-589. |
[6] | Urologic Chinese Oncology Group. Expert consensus on early diagnosis and treatment of bladder cancer (2024 edition) [J]. China Oncology, 2024, 34(6): 607-618. |
[7] | ZHUANG Han, HU Weigang, ZHANG Zhen, WANG Jiazhou. Deep learning-based lymphocyte infiltration detection on pathological images [J]. China Oncology, 2024, 34(4): 409-417. |
[8] | JIANG Mengqi, HAN Yuchen, FU Xiaolong. Research progress on H-E stained whole slide image analysis by artificial intelligence in lung cancer [J]. China Oncology, 2024, 34(3): 306-315. |
[9] | WU Hongji, WANG Haixia, WANG Ling, LUO Xiaogang, ZOU Dongling. Application progress and challenges of artificial intelligence in organoid research [J]. China Oncology, 2024, 34(2): 210-219. |
[10] | OUYANG Fei, WANG Yang, CHEN Yu, PEI Guoqing, WANG Ling, ZHANG Yang, SHI Lei. Construction of the prediction model of breast cancer bone metastasis based on machine learning [J]. China Oncology, 2024, 34(10): 903-914. |
[11] | WANG Xuemei, CHENG Yu, QI Jiemin. PRMT7 inhibits proliferation and migration of bladder cancer cells by regulating Notch signaling pathway [J]. China Oncology, 2023, 33(5): 437-444. |
[12] | TANG Duocai, ZHOU Shukui, ZHANG Guiyin, LIU Lei, LIAO Hong. Analysis of risk factors of recurrence in non-muscle invasive bladder cancer patients after initial transurethral resection of bladder tumor [J]. China Oncology, 2023, 33(5): 478-483. |
[13] | LIU Yang, HU Yiyang, LIU Yueping, NIU Shuyao, DING Pingan, TIAN Yuan, GUO Honghai, YANG Peigang, ZHANG Ze, ZHENG Tao, TAN Bibo, FAN Liqiao, LI Yong, ZHAO Qun. The value of artificial intelligence-assisted technology in HER2 assessmentof gastric cancer patients receiving neoadjuvant chemotherapy [J]. China Oncology, 2023, 33(4): 377-387. |
[14] | ZHENG Shengfeng, ZHU Yiping, YE Dingwei. Advances in basic research, clinical diagnosis and treatment of bladder cancer in 2022 [J]. China Oncology, 2023, 33(3): 201-209. |
[15] | PAN Jian, ZHU Yao, DAI Bo, YE Dingwei. Advances in basic research, clinical diagnosis and treatment of prostate cancer in 2022 [J]. China Oncology, 2023, 33(3): 210-217. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
沪ICP备12009617
Powered by Beijing Magtech Co. Ltd