China Oncology ›› 2024, Vol. 34 ›› Issue (10): 903-914.doi: 10.19401/j.cnki.1007-3639.2024.10.001
• Article • Previous Articles Next Articles
OUYANG Fei1(), WANG Yang2, CHEN Yu1, PEI Guoqing1, WANG Ling3, ZHANG Yang1, SHI Lei1(
)
Received:
2024-06-13
Revised:
2024-09-05
Online:
2024-10-30
Published:
2024-11-20
Contact:
SHI Lei
Share article
CLC Number:
OUYANG Fei, WANG Yang, CHEN Yu, PEI Guoqing, WANG Ling, ZHANG Yang, SHI Lei. Construction of the prediction model of breast cancer bone metastasis based on machine learning[J]. China Oncology, 2024, 34(10): 903-914.
Tab. 1
Characteristics of the patients [n (%)]"
Variable | Total | Training set | Validation set | P value | ||
---|---|---|---|---|---|---|
(n=10 106) | (n=70 73) | (n=3 033) | ||||
Age/year | ||||||
<40 | 787 (7.8) | 549 (7.8) | 238 (7.8) | 0.916 | ||
≥40 | 9 319 (92.2) | 6 524 (92.2) | 2 795 (92.2) | |||
Race | ||||||
White | 7 633 (75.5) | 5 357 (75.7) | 2 276 (75.0) | 0.652 | ||
Black | 1 647 (16.3) | 1 137 (16.1) | 510 (16.8) | |||
Others* | 826 (8.2) | 579 (8.2) | 247 (8.1) | |||
Gender | ||||||
Male | 118 (1.2) | 87 (1.2) | 31 (1.0) | 0.429 | ||
Female | 9 988 (98.8) | 6 986 (98.8) | 3 002 (99.0) | |||
Marital status | ||||||
Unmarried# | 5 249 (51.9) | 3 670 (51.9) | 1 579 (52.1) | 0.890 | ||
Married | 4 857 (48.1) | 3 403 (48.1) | 1 454 (47.9) | |||
Laterality | ||||||
Bilateral | 23 (0.2) | 17 (0.2) | 6 (0.2) | 0.593 | ||
Right | 4 895 (48.4) | 3 447 (48.7) | 1 448 (47.7) | |||
Left | 5 188 (51.3) | 3 609 (51.0) | 1 579 (52.1) | |||
Grade | ||||||
Ⅰ | 813 (8.0) | 570 (8.1) | 243 (8.0) | 0.993 | ||
Ⅱ | 4 215 (41.7) | 2 954 (41.8) | 1 261 (41.6) | |||
Ⅲ | 5 001 (49.5) | 3 496 (49.4) | 1 505 (49.6) | |||
Ⅳ | 77 (0.8) | 53 (0.7) | 24 (0.8) | |||
Pathological type | ||||||
Ductal | 8 418 (83.3) | 5 885 (83.2) | 25 33 (83.5) | 0.105 | ||
Others | 683 (6.8) | 500 (7.1) | 183 (6.0) | |||
Lobular | 1 005 (9.9) | 688 (9.7) | 317 (10.5) | |||
ER status | ||||||
Positive | 7 608 (75.3) | 5 300 (74.9) | 2 308 (76.1) | 0.223 | ||
Negative | 2 498 (24.7) | 1 773 (25.1) | 725 (23.9) | |||
PR status | ||||||
Positive | 6 215 (61.5) | 4 340 (61.4) | 1 875 (61.8) | 0.680 | ||
Negative | 3 891 (38.5) | 2 733 (38.6) | 1 158 (38.2) | |||
HER2 status | ||||||
Positive | 2 618 (25.9) | 1 849 (26.1) | 769 (25.4) | 0.422 | ||
Negative | 7 488 (74.1) | 5224 (73.9) | 2 264 (74.6) | |||
Breast subtype | ||||||
HR-/HER2- | 1 447 (14.3) | 1 013 (14.3) | 434 (14.3) | 0.452 | ||
HR-/HER2+ | 893 (8.8) | 646 (9.1) | 247 (8.1) | |||
HR+/HER2- | 6 041 (59.8) | 4 211 (59.5) | 1 830 (60.3) | |||
HR+/HER2+ | 1 725 (17.1) | 1 203 (17.0) | 522 (17.2) | |||
T stage | ||||||
T1 | 1 470 (14.5) | 1 022 (14.4) | 448 (14.8) | 0.501 | ||
T2 | 3 446 (34.1) | 2 385 (33.7) | 1 061 (35.0) | |||
T3 | 1 838 (18.2) | 1 305 (18.5) | 533 (17.6) | |||
T4 | 3 352 (33.2) | 2 361 (33.4) | 991 (32.7) | |||
N stage | ||||||
N0 | 2 370 (23.5) | 1 669 (23.6) | 701 (23.1) | 0.078 | ||
N1 | 4 585 (45.4) | 3 157 (44.6) | 1 428 (47.1) | |||
N2 | 1 352 (13.4) | 978 (13.8) | 374 (12.3) | |||
N3 | 1 799 (17.8) | 1 269 (17.9) | 530 (17.5) | |||
Brain metastasis | ||||||
No | 9 464 (93.6) | 6 630 (93.7) | 2 834 (93.4) | 0.604 | ||
Yes | 642 (6.4) | 443 (6.3) | 199 (6.6) | |||
Liver metastasis | ||||||
No | 7 743 (76.6) | 5 418 (76.6) | 2 325 (76.7) | 0.972 | ||
Yes | 2 363 (23.4) | 1 655 (23.4) | 708 (23.3) | |||
Lung metastasis | ||||||
No | 7 144 (70.7) | 5 001 (70.7) | 2 143 (70.7) | 0.979 | ||
Yes | 2 962 (29.3) | 2 072 (29.3) | 890 (29.3) | |||
Radiotherapy | ||||||
Yes | 3 595 (35.6) | 2 549 (36.0) | 1 046 (34.5) | 0.142 | ||
No/unknown | 6 511 (64.4) | 4 524 (64.0) | 1 987 (65.5) | |||
Chemotherapy | ||||||
Yes | 6 264 (62.0) | 4 408 (62.3) | 1 856 (61.2) | 0.295 | ||
No/unknown | 3 842 (38.0) | 2 665 (37.7) | 1 177 (38.8) | |||
Surgery | ||||||
Yes | 4 232 (41.9) | 2 991 (42.3) | 1 241 (40.9) | 0.208 | ||
No | 5 874 (58.1) | 4 082 (57.7) | 1 792 (59.1) | |||
Bone metastasis | ||||||
No | 3 685 (36.5) | 2 579 (36.5) | 1 106 (36.5) | 1.000 | ||
Yes | 6 421 (63.5) | 4 494 (63.5) | 1 927 (63.5) |
Fig. 1
LASSO regression analysis for clinical feature selection A: Coefficient distributions of models drawn for logarithmic (lambda) sequences at different penalty levels; B:10 times cross-validation error, the first vertical line is the minimum error, the second vertical line is the cross-validation error of 1 times the minimum standard deviation."
Tab. 2
Univariate and multivariate logistic regression analysis of influencing factors for bone metastasis in breast cancer patients in the training set"
Variable | Univariate | Multivariate | Variable | Univariate | Multivariate | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
OR (95% CI) | P value | OR (95% CI) | P value | OR (95% CI) | P value | OR (95% CI) | P value | |||||
Race | N stage | |||||||||||
White | - | - | - | - | N0 | - | - | - | - | |||
Black | 0.82 (0.72-0.94) | <0.001 | 0.94 (0.81-1.08) | 0.358 | N1 | 0.88 (0.77-0.99) | 0.040 | 1.00 (0.88-1.15) | 0.956 | |||
Others# | 0.72 (0.61-0.86) | <0.001 | 0.77 (0.64-0.93) | 0.006 | N2 | 0.83 (0.71-0.98) | 0.030 | 1.06 (0.88-1.27) | 0.550 | |||
Grade | N3 | 0.62 (0.54-0.73) | <0.001 | 0.82 (0.69-0.96) | 0.017 | |||||||
Ⅰ | - | - | - | - | Lung metastasis | - | - | - | - | |||
Ⅱ | 0.95 (0.78-1.17) | 0.640 | 1.12 (0.9-1.38) | 0.300 | No | - | - | - | - | |||
Ⅲ | 0.42 (0.34-0.51) | <0.001 | 0.74 (0.6-0.91) | 0.005 | Yes | 0.50 (0.45-0.55) | <0.001 | 0.50 (0.44-0.56) | <0.001 | |||
Ⅳ | 0.25 (0.14-0.45) | <0.001 | 0.42 (0.23-0.78) | 0.006 | Radiotherapy | |||||||
ER status | Yes | - | - | - | - | |||||||
Positive | - | - | - | - | No/unknown | 0.61 (0.55-0.67) | <0.001 | 0.53 (0.48-0.6) | <0.001 | |||
Negative | 0.32 (0.28-0.35) | <0.001 | 0.55 (0.47-0.64) | <0.001 | Chemotherapy | |||||||
PR status | Yes | - | - | - | - | |||||||
Positive | - | - | - | - | No/unknown | 1.72 (1.55-1.9) | <0.001 | 1.23 (1.09-1.38) | <0.001 | |||
Negative | 0.40 (0.36-0.44) | <0.001 | 0.71 (0.62-0.82) | <0.001 | Surgery | |||||||
HER2 status | Yes | - | - | - | - | |||||||
Positive | - | - | - | - | No | 1.76 (1.59-1.94) | <0.001 | 2.01 (1.79-2.24) | <0.001 | |||
Negative | 1.57 (1.41-1.75) | <0.001 | 1.16 (1.03-1.31) | 0.017 |
Fig. 2
Five-fold cross-validation graph of a machine learning algorithm DT: Decision tree; EN: Elastic net; KNN: K-nearest neighbor; LightGBM: Light gradient boosting machine; LR: Logistic regression; NN: Neural network; RF: Random forest; SVM: Support vector machine; Xgboost: Extreme gradient boosting."
[1] | SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. |
[2] | MEDEIROS B, ALLAN A L. Molecular mechanisms of breast cancer metastasis to the lung: clinical and experimental perspectives[J]. Int J Mol Sci, 2019, 20(9): 2272. |
[3] |
LIANG Y R, ZHANG H W, SONG X J, et al. Metastatic heterogeneity of breast cancer: molecular mechanism and potential therapeutic targets[J]. Semin Cancer Biol, 2020, 60: 14-27.
doi: S1044-579X(19)30063-X pmid: 31421262 |
[4] | JIANG Z C, LI J Y, CHEN S J, et al. Zoledronate and SPIO dual-targeting nanoparticles loaded with ICG for photothermal therapy of breast cancer tibial metastasis[J]. Sci Rep, 2020, 10(1): 13675. |
[5] | ZAJKOWSKA M, LUBOWICKA E, FIEDOROWICZ W, et al. Human plasma levels of VEGF-A, VEGF-C, VEGF-D, their soluble receptor-VEGFR-2 and applicability of these parameters as tumor markers in the diagnostics of breast cancer[J]. Pathol Oncol Res, 2019, 25(4): 1477-1486. |
[6] | SIDEY-GIBBONS J A M, SIDEY-GIBBONS C J. Machine learning in medicine: a practical introduction[J]. BMC Med Res Methodol, 2019, 19(1): 64. |
[7] | ESTEVA A, KUPREL B, NOVOA R A, et al. Dermatologist-level classification of skin cancer with deep neural networks[J]. Nature, 2017, 542(7639): 115-118. |
[8] |
ANDERSON J P, PARIKH J R, SHENFELD D K, et al. Reverse engineering and evaluation of prediction models for progression to type 2 diabetes: an application of machine learning using electronic health records[J]. J Diabetes Sci Technol, 2015, 10(1): 6-18.
doi: 10.1177/1932296815620200 pmid: 26685993 |
[9] | RAHIMIAN F, SALIMI-KHORSHIDI G, PAYBERAH A H, et al. Predicting the risk of emergency admission with machine learning: development and validation using linked electronic health records[J]. PLoS Med, 2018, 15(11): e1002695. |
[10] | GUO Q P, WANG Y Q, AN J, et al. A prognostic model for patients with gastric signet ring cell carcinoma[J]. Technol Cancer Res Treat, 2021, 20: 15330338211027912. |
[11] |
YANG Y P, MA Y X, SHENG J, et al. A multicenter, retrospective epidemiologic survey of the clinical features and management of bone metastatic disease in China[J]. Chin J Cancer, 2016, 35: 40.
doi: 10.1186/s40880-016-0102-6 pmid: 27112196 |
[12] |
PLUNKETT T A, SMITH P, RUBENS R D. Risk of complications from bone metastases in breast cancer. implications for management[J]. Eur J Cancer, 2000, 36(4): 476-482.
doi: 10.1016/s0959-8049(99)00331-7 pmid: 10717523 |
[13] |
PAREEK A, SINGH O P, YOGI V, et al. Bone metastases incidence and its correlation with hormonal and human epidermal growth factor receptor 2 neu receptors in breast cancer[J]. J Cancer Res Ther, 2019, 15(5): 971-975.
doi: 10.4103/jcrt.JCRT_235_18 pmid: 31603096 |
[14] | Recommended breast cancer surveillance guidelines. American Society of Clinical Oncology[J]. J Clin Oncol, 1997, 15(5): 2149-2156. |
[15] | ROSSELLI DEL TURCO M, PALLI D, CARIDDI A, et al. Intensive diagnostic follow-up after treatment of primary breast cancer. A randomized trial. National research council project on breast cancer follow-up[J]. JAMA, 1994, 271(20): 1593-1597. |
[16] | Impact of follow-up testing on survival and health-related quality of life in breast cancer patients. A multicenter randomized controlled trial. The GIVIO investigators[J]. JAMA, 1994, 271(20): 1587-1592. |
[17] |
MO X L, CHEN X J, IEONG C, et al. Early prediction of clinical response to etanercept treatment in juvenile idiopathic arthritis using machine learning[J]. Front Pharmacol, 2020, 11: 1164.
doi: 10.3389/fphar.2020.01164 pmid: 32848772 |
[18] | ZHU J, ZHENG J X, LI L F, et al. Application of machine learning algorithms to predict central lymph node metastasis in T1-T2, non-invasive, and clinically node negative papillary thyroid carcinoma[J]. Front Med, 2021, 8: 635771. |
[19] | QIU B X, SHEN Z X, WU S, et al. A machine learning-based model for predicting distant metastasis in patients with rectal cancer[J]. Front Oncol, 2023, 13: 1235121. |
[20] | FENG X W, HONG T, LIU W C, et al. Development and validation of a machine learning model to predict the risk of lymph node metastasis in renal carcinoma[J]. Front Endocrinol, 2022, 13: 1054358. |
[21] | XI N M, WANG L, YANG C J. Improving the diagnosis of thyroid cancer by machine learning and clinical data[J]. Sci Rep, 2022, 12(1): 11143. |
[22] | SAKHUJA S, DEVEAUX A, WILSON L E, et al. Patterns of de-novo metastasis and breast cancer-specific mortality by race and molecular subtype in the SEER population-based dataset[J]. Breast Cancer Res Treat, 2021, 186(2): 509-518. |
[23] | GAO T Y, SHAO F. Risk factors and prognostic factors for inflammatory breast cancer with bone metastasis: a population-based study[J]. J Orthop Surg (Hong Kong), 2021, 29(2): 23094990211000144. |
[24] | AKINYEMIJU T, SAKHUJA S, WATERBOR J, et al. Racial/ethnic disparities in de novo metastases sites and survival outcomes for patients with primary breast, colorectal, and prostate cancer[J]. Cancer Med, 2018, 7(4): 1183-1193. |
[25] | CHEN J, ZHU S, XIE X Z, et al. Analysis of clinicopathological factors associated with bone metastasis in breast cancer[J]. J Huazhong Univ Sci Technol (Med Sci), 2013, 33(1): 122-125. |
[26] | LIEDE A, JERZAK K J, HERNANDEZ R K, et al. The incidence of bone metastasis after early-stage breast cancer in Canada[J]. Breast Cancer Res Treat, 2016, 156(3): 587-595. |
[27] | GAO C W, WANG J G, HE P S, et al. Metastatic pattern of breast cancer by histologic grade: a SEER population-based study[J]. Discov Med, 2022, 34(173): 189-197. |
[28] | JAMES J J, EVANS A J, PINDER S E, et al. Bone metastases from breast carcinoma: histopathological-radiological correlations and prognostic features[J]. Br J Cancer, 2003, 89(4): 660-665. |
[29] |
ARPINO G, WEISS H, LEE A V, et al. Estrogen receptor-positive, progesterone receptor-negative breast cancer: association with growth factor receptor expression and tamoxifen resistance[J]. J Natl Cancer Inst, 2005, 97(17): 1254-1261.
doi: 10.1093/jnci/dji249 pmid: 16145046 |
[30] | ARCIERO C A, GUO Y, JIANG R J, et al. ER+/HER2+ breast cancer has different metastatic patterns and better survival than ER-/HER2+ breast cancer[J]. Clin Breast Cancer, 2019, 19(4): 236-245. |
[31] |
HAYASHI N, IWAMOTO T, QI Y, et al. Bone metastasis-related signaling pathways in breast cancers stratified by estrogen receptor status[J]. J Cancer, 2017, 8(6): 1045-1052.
doi: 10.7150/jca.13690 pmid: 28529618 |
[32] |
LOI S, HAIBE-KAINS B, DESMEDT C, et al. Definition of clinically distinct molecular subtypes in estrogen receptor-positive breast carcinomas through genomic grade[J]. J Clin Oncol, 2007, 25(10): 1239-1246.
doi: 10.1200/JCO.2006.07.1522 pmid: 17401012 |
[33] |
KOIZUMI M, YOSHIMOTO M, KASUMI F, et al. An open cohort study of bone metastasis incidence following surgery in breast cancer patients[J]. BMC Cancer, 2010, 10: 381.
doi: 10.1186/1471-2407-10-381 pmid: 20646320 |
[34] |
TAYYEB B, PARVIN M. Pathogenesis of breast cancer metastasis to brain: a comprehensive approach to the signaling network[J]. Mol Neurobiol, 2016, 53(1): 446-454.
doi: 10.1007/s12035-014-9023-z pmid: 25465242 |
[35] | LU X, KANG Y B. Organotropism of breast cancer metastasis[J]. J Mammary Gland Biol Neoplasia, 2007, 12(2/3): 153-162. |
[36] |
YATES L R, KNAPPSKOG S, WEDGE D, et al. Genomic evolution of breast cancer metastasis and relapse[J]. Cancer Cell, 2017, 32(2): 169-184.e7.
doi: S1535-6108(17)30297-0 pmid: 28810143 |
[37] |
中国抗癌协会乳腺癌专业委员会, 中华医学会肿瘤学分会乳腺肿瘤学组. 中国抗癌协会乳腺癌诊治指南与规范(2024年版)[J]. 中国癌症杂志, 2023, 33(12): 1092-1187.
doi: 10.19401/j.cnki.1007-3639.2023.12.004 |
The Society of Breast Cancer China Anti-Cancer Association, Breast Oncology Group of the Oncology Branch of the Chinese Medical Association. Guidelines for breast cancer diagnosis and treatment by China Anti-cancer Association (2024 edition)[J]. China Oncol, 2023, 33(12): 1092-1187. | |
[38] | TU Q H, HU C, ZHANG H, et al. Establishment and validation of novel clinical prognosis nomograms for luminal A breast cancer patients with bone metastasis[J]. Biomed Res Int, 2020, 2020: 1972064. |
[39] | GAO B, OU X L, LI M F, et al. Risk stratification system and visualized dynamic nomogram constructed for predicting diagnosis and prognosis in rare male breast cancer patients with bone metastases[J]. Front Endocrinol, 2022, 13: 1013338. |
[40] | PURUSHOTHAM A, SHAMIL E, CARIATI M, et al. Age at diagnosis and distant metastasis in breast cancer: a surprising inverse relationship[J]. Eur J Cancer, 2014, 50(10): 1697-1705. |
[41] |
CHEN X, LI D W. Sequencing facility and DNA source associated patterns of virus-mappable reads in whole-genome sequencing data[J]. Genomics, 2021, 113(1 Pt 2): 1189-1198.
doi: 10.1016/j.ygeno.2020.12.004 pmid: 33301893 |
[42] | LIU G C, CHEN X, LUAN Y H, et al. VirusPredictor: XGBoost-based software to predict virus-related sequences in human data[J]. Bioinformatics, 2024, 40(4): btae192. |
[43] | PALECZEK A, GROCHALA D, RYDOSZ A. Artificial breath classification using XGBoost algorithm for diabetes detection[J]. Sensors, 2021, 21(12): 4187. |
[44] | DONG B T, ZHANG H, DUAN Y Y, et al. Development of a machine learning-based model to predict prognosis of alpha-fetoprotein-positive hepatocellular carcinoma[J]. J Transl Med, 2024, 22(1): 455. |
[45] | LI B, EISENBERG N, BEATON D, et al. Using machine learning (XGBoost) to predict outcomes after infrainguinal bypass for peripheral artery disease[J]. Ann Surg, 2024, 279(4): 705-713. |
[1] | XU Rui, WANG Zehao, WU Jiong. Advances in the role of tumor-associated neutrophils in the development of breast cancer [J]. China Oncology, 2024, 34(9): 881-889. |
[2] | CAO Xiaoshan, YANG Beibei, CONG Binbin, LIU Hong. The progress of treatment for brain metastases of triple-negative breast cancer [J]. China Oncology, 2024, 34(8): 777-784. |
[3] | ZHANG Jian. Clinical consideration of two key questions in assessing menopausal status of female breast cancer patients [J]. China Oncology, 2024, 34(7): 619-627. |
[4] | JIANG Dan, SONG Guoqing, WANG Xiaodan. Study on the mechanism of mitochondrial dysfunction and CPT1A/ERK signal transduction pathway regulating malignant behavior in breast cancer [J]. China Oncology, 2024, 34(7): 650-658. |
[5] | WENG Junyong, YE Zilan, ZHANG Ruoxin, LIU Qi, LI Xinxiang. Exploring the guiding role of the number of adverse pathological features in risk stratification for recurrence of stage Ⅰ-Ⅲ colorectal cancer: a retrospective cohort study of 9 875 cases [J]. China Oncology, 2024, 34(6): 527-536. |
[6] | DONG Jianqiao, LI Kunyan, LI Jing, WANG Bin, WANG Yanhong, JIA Hongyan. A study on mechanism of SIRT3 inducing endocrine drug resistance in breast cancer via deacetylating YME1L1 [J]. China Oncology, 2024, 34(6): 537-547. |
[7] | HAO Xian, HUANG Jianjun, YANG Wenxiu, LIU Jinting, ZHANG Junhong, LUO Yubei, LI Qing, WANG Dahong, GAO Yuwei, TAN Fuyun, BO Li, ZHENG Yu, WANG Rong, FENG Jianglong, LI Jing, ZHAO Chunhua, DOU Xiaowei. Establishment of primary breast cancer cell line as new model for drug screening and basic research [J]. China Oncology, 2024, 34(6): 561-570. |
[8] | JIANG Tiaoyan, JIA Tianying, ZHANG Qin. Contrast-enhanced computed tomography-based radiomics models for the risk categorization of thymoma [J]. China Oncology, 2024, 34(6): 581-589. |
[9] | ZHANG Ruoxin, YE Zilan, WENG Junyong, LI Xinxiang. Correlation study between advanced age and inferior prognosis in stage Ⅱ colorectal cancer patients [J]. China Oncology, 2024, 34(5): 485-492. |
[10] | Committee of Breast Cancer Society, China Anti-Cancer Association. Expert consensus on clinical applications of ovarian function suppression for Chinese women with early breast cancer (2024 edition) [J]. China Oncology, 2024, 34(3): 316-333. |
[11] | ZHANG Qi, XIU Bingqiu, WU Jiong. Progress of important clinical research of breast cancer in China in 2023 [J]. China Oncology, 2024, 34(2): 135-142. |
[12] | ZHANG Siyuan, JIANG Zefei. Important research progress in clinical practice for advanced breast cancer in 2023 [J]. China Oncology, 2024, 34(2): 143-150. |
[13] | WANG Zhaobu, LI Xing, YU Xinmiao, JIN Feng. Important research progress in clinical practice for early breast cancer in 2023 [J]. China Oncology, 2024, 34(2): 151-160. |
[14] | LUO Yang, SUN Tao, SHAO Zhimin, CUI Jiuwei, PAN Yueyin, ZHANG Qingyuan, CHENG Ying, LI huiping, YANG Yan, YE Changsheng, YU Guohua, WANG Jingfen, LIU Yunjiang, LIU Xinlan, ZHOU Yuhong, BAI Yuju, GU Yuanting, WANG Xiaojia, XU Binghe, SONG Lihua. Efficacy, metabolic characteristics, safety and immunogenicity of AK-HER2 compared with reference trastuzumab in patients with metastatic HER2-positive breast cancer: a multicenter, randomized, double-blind phase Ⅲ equivalence trial [J]. China Oncology, 2024, 34(2): 161-175. |
[15] | CHEN Yuanxiang, YU Tao, YANG Shiyu, ZENG Tao, WEI Lan, ZHANG Yan. KDM4A promotes the migration and invasion of breast cancer cell line MDA-MB-231 by downregulating BMP9 [J]. China Oncology, 2024, 34(2): 176-184. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
沪ICP备12009617
Powered by Beijing Magtech Co. Ltd