China Oncology ›› 2024, Vol. 34 ›› Issue (1): 1-12.doi: 10.19401/j.cnki.1007-3639.2024.01.001
• Specialist' Commentary • Previous Articles Next Articles
LI Tianjiao(), YE Longyun, JIN Kaizhou, WU Weiding, YU Xianjun(
)
Received:
2023-12-25
Revised:
2024-01-03
Online:
2024-01-30
Published:
2024-02-05
Contact:
YU Xianjun.
Share article
CLC Number:
LI Tianjiao, YE Longyun, JIN Kaizhou, WU Weiding, YU Xianjun. Advances in basic research, clinical diagnosis and treatment of pancreatic cancer in 2023[J]. China Oncology, 2024, 34(1): 1-12.
[1] |
SIEGEL R L, MILLER K D, WAGLE N S, et al. Cancer statistics, 2023[J]. CA A Cancer J Clinicians, 2023, 73(1): 17-48.
doi: 10.3322/caac.v73.1 |
[2] |
WANG Y A, YAN Q J, FAN C M, et al. Overview and countermeasures of cancer burden in China[J]. Sci China Life Sci, 2023, 66(11): 2515-2526.
doi: 10.1007/s11427-022-2240-6 |
[3] |
JU W, ZHENG R, ZHANG S, et al. Cancer statistics in Chinese older people, 2022: current burden, time trends, and comparisons with the US, Japan, and the Republic of Korea[J]. Sci China Life Sci, 2023, 66(5): 1079-1091.
doi: 10.1007/s11427-022-2218-x |
[4] | HE S Y, XIA C F, LI H, et al. Cancer profiles in China and comparisons with the USA: a comprehensive analysis in the incidence, mortality, survival, staging, and attribution to risk factors[J]. Sci China Life Sci, 2023: 1-10. |
[5] |
HALBROOK C J, LYSSIOTIS C A, PASCA DI MAGLIANO M, et al. Pancreatic cancer: advances and challenges[J]. Cell, 2023, 186(8): 1729-1754.
doi: 10.1016/j.cell.2023.02.014 pmid: 37059070 |
[6] |
CARPENTER E S, ELHOSSINY A M, KADIYALA P, et al. Analysis of donor pancreata defines the transcriptomic signature and microenvironment of early neoplastic lesions[J]. Cancer Discov, 2023, 13(6): 1324-1345.
doi: 10.1158/2159-8290.CD-23-0013 |
[7] |
ZHAO Y, TANG J, JIANG K, et al. Liquid biopsy in pancreatic cancer-current perspective and future outlook[J]. Biochim Biophys Acta Rev Cancer, 2023, 1878(3): 188868.
doi: 10.1016/j.bbcan.2023.188868 |
[8] |
GAO Q, LIN Y P, LI B S, et al. Unintrusive multi-cancer detection by circulating cell-free DNA methylation sequencing (THUNDER): development and independent validation studies[J]. Ann Oncol, 2023, 34(5): 486-495.
doi: 10.1016/j.annonc.2023.02.010 |
[9] |
HAAN D, BERGAMASCHI A, FRIEDL V, et al. Epigenomic blood-based early detection of pancreatic cancer employing cell-free DNA[J]. Clin Gastroenterol Hepatol, 2023, 21(7): 1802-1809.e6.
doi: 10.1016/j.cgh.2023.03.016 |
[10] |
CHEN P T, WU T H, WANG P C, et al. Pancreatic cancer detection on CT scans with deep learning: a nationwide population-based study[J]. Radiology, 2023, 306(1): 172-182.
doi: 10.1148/radiol.220152 |
[11] |
LI X Y, GUO R, LU J, et al. Causality-driven graph neural network for early diagnosis of pancreatic cancer in non-contrast computerized tomography[J]. IEEE Trans Med Imaging, 2023, 42(6): 1656-1667.
doi: 10.1109/TMI.2023.3236162 |
[12] |
KORFIATIS P, SUMAN G, PATNAM N G, et al. Automated artificial intelligence model trained on a large data set can detect pancreas cancer on diagnostic computed tomography scans as well as visually occult preinvasive cancer on prediagnostic computed tomography scans[J]. Gastroenterology, 2023, 165(6): 1533-1546.e4.
doi: 10.1053/j.gastro.2023.08.034 |
[13] |
STOFFEL E M, BRAND R E, GOGGINS M. Pancreatic cancer: changing epidemiology and new approaches to risk assessment, early detection, and prevention[J]. Gastroenterology, 2023, 164(5): 752-765.
doi: 10.1053/j.gastro.2023.02.012 |
[14] |
PARTYKA O, PAJEWSKA M, KWAŚNIEWSKA D, et al. Overview of pancreatic cancer epidemiology in Europe and recommendations for screening in high-risk populations[J]. Cancers (Basel), 2023, 15(14): 3634.
doi: 10.3390/cancers15143634 |
[15] |
PLACIDO D, YUAN B, HJALTELIN J X, et al. A deep learning algorithm to predict risk of pancreatic cancer from disease trajectories[J]. Nat Med, 2023, 29(5): 1113-1122.
doi: 10.1038/s41591-023-02332-5 pmid: 37156936 |
[16] |
RAUT P, NIMMAKAYALA R K, BATRA S K, et al. Clinical and molecular attributes and evaluation of pancreatic cystic neoplasm[J]. Biochim Biophys Acta Rev Cancer, 2023, 1878(1): 188851.
doi: 10.1016/j.bbcan.2022.188851 |
[17] |
POLLINI T, WONG P, MAKER A V. The landmark series: intraductal papillary mucinous neoplasms of the pancreas-from prevalence to early cancer detection[J]. Ann Surg Oncol, 2023, 30(3): 1453-1462.
doi: 10.1245/s10434-022-12870-w pmid: 36600097 |
[18] |
NIKIFOROVA M N, WALD A I, SPAGNOLO D M, et al. A combined DNA/RNA-based next-generation sequencing platform to improve the classification of pancreatic cysts and early detection of pancreatic cancer arising from pancreatic cysts[J]. Ann Surg, 2023, 278(4): e789-e797.
doi: 10.1097/SLA.0000000000005904 pmid: 37212422 |
[19] |
TANAKA M, FERNÁNDEZ-DEL CASTILLO C, KAMISAWA T, et al. Revisions of international consensus Fukuoka guidelines for the management of IPMN of the pancreas[J]. Pancreatology, 2017, 17(5): 738-753.
doi: S1424-3903(17)30516-1 pmid: 28735806 |
[20] |
VEGE S S, ZIRING B, JAIN R, et al. American Gastroenterological Association institute guideline on the diagnosis and management of asymptomatic neoplastic pancreatic cysts[J]. Gastroenterology, 2015, 148(4): 819-822; quize12-13.
doi: 10.1053/j.gastro.2015.01.015 pmid: 25805375 |
[21] |
ZHANG X F, MAO T B, ZHANG B, et al. Characterization of the genomic landscape in large-scale Chinese patients with pancreatic cancer[J]. EBioMedicine, 2022, 77: 103897.
doi: 10.1016/j.ebiom.2022.103897 |
[22] |
STRICKLER J H, SATAKE H, GEORGE T J, et al. Sotorasib in KRAS p.G12C-mutated advanced pancreatic cancer[J]. N Engl J Med, 2023, 388(1): 33-43.
doi: 10.1056/NEJMoa2208470 |
[23] |
HALLIN J, BOWCUT V, CALINISAN A, et al. Anti-tumor efficacy of a potent and selective non-covalent KRAS G12D inhibitor[J]. Nat Med, 2022, 28(10): 2171-2182.
doi: 10.1038/s41591-022-02007-7 |
[24] |
MAHADEVAN K K, MCANDREWS K M, LEBLEU V S, et al. KRAS G12D inhibition reprograms the microenvironment of early and advanced pancreatic cancer to promote FAS-mediated killing by CD8+ T cells[J]. Cancer Cell, 2023, 41(9): 1606-1620.e8.
doi: 10.1016/j.ccell.2023.07.002 |
[25] |
KEMP S B, CHENG N, MARKOSYAN N, et al. Efficacy of a small-molecule inhibitor of Kras G12D in immunocompetent models of pancreatic cancer[J]. Cancer Discov, 2023, 13(2): 298-311.
doi: 10.1158/2159-8290.CD-22-1066 |
[26] |
SINGH H, KELLER R B, KAPNER K S, et al. Oncogenic drivers and therapeutic vulnerabilities in KRAS wild-type pancreatic cancer[J]. Clin Cancer Res, 2023, 29(22): 4627-4643.
doi: 10.1158/1078-0432.CCR-22-3930 |
[27] | GOODWIN C M, WATERS A M, KLOMP J E, et al. Combination therapies with CDK4/6 inhibitors to treat KRAS-mutant pancreatic cancer[J]. Cancer Res, 2023, 83(1): 141-157. |
[28] |
STOSSEL C, RAITSES-GUREVICH M, ATIAS D, et al. Spectrum of response to platinum and PARP inhibitors in germline BRCA-associated pancreatic cancer in the clinical and preclinical setting[J]. Cancer Discov, 2023, 13(8): 1826-1843.
doi: 10.1158/2159-8290.CD-22-0412 |
[29] |
PATTERSON-FORTIN J, JADHAV H, PANTELIDOU C, et al. Polymerase θ inhibition activates the cGAS-STING pathway and cooperates with immune checkpoint blockade in models of BRCA-deficient cancer[J]. Nat Commun, 2023, 14(1): 1390.
doi: 10.1038/s41467-023-37096-6 |
[30] |
MANDELKER D, MARRA A, ZHENG-LIN B B, et al. Genomic profiling reveals germline predisposition and homologous recombination deficiency in pancreatic acinar cell carcinoma[J]. J Clin Oncol, 2023, 41(33): 5151-5162.
doi: 10.1200/JCO.23.00561 |
[31] |
YE L, SHI S, CHEN W. Innate immunity in pancreatic cancer: lineage tracing and function[J]. Front Immunol, 2022, 13: 1081919.
doi: 10.3389/fimmu.2022.1081919 |
[32] |
LV G, ZHANG L, GAO L, et al. The application of single-cell sequencing in pancreatic neoplasm: analysis, diagnosis and treatment[J]. Br J Cancer, 2023, 128(2): 206-218.
doi: 10.1038/s41416-022-02023-x |
[33] |
CHEN Y J, LI G N, LI X J, et al. Targeting IRG1 reverses the immunosuppressive function of tumor-associated macrophages and enhances cancer immunotherapy[J]. Sci Adv, 2023, 9(17): eadg0654.
doi: 10.1126/sciadv.adg0654 |
[34] |
ZUO C, BAER J M, KNOLHOFF B L, et al. Stromal and therapy-induced macrophage proliferation promotes PDAC progression and susceptibility to innate immunotherapy[J]. J Exp Med, 2023, 220(6): e20212062.
doi: 10.1084/jem.20212062 |
[35] |
ALONSO-NOCELO M, RUIZ-CAÑAS L, SANCHO P, et al. Macrophages direct cancer cells through a LOXL2-mediated metastatic cascade in pancreatic ductal adenocarcinoma[J]. Gut, 2023, 72(2): 345-359.
doi: 10.1136/gutjnl-2021-325564 |
[36] |
CARONNI N, LA TERZA F, VITTORIA F M, et al. IL-1β+ macrophages fuel pathogenic inflammation in pancreatic cancer[J]. Nature, 2023, 623(7986): 415-422.
doi: 10.1038/s41586-023-06685-2 |
[37] |
LIU X, TANG R, XU J, et al. CRIP1 fosters MDSC trafficking and resets tumour microenvironment via facilitating NF-κB/p65 nuclear translocation in pancreatic ductal adenocarcinoma[J]. Gut, 2023, 72(12): 2329-2343.
doi: 10.1136/gutjnl-2022-329349 |
[38] |
WANG L W, LIU Y H, DAI Y T, et al. Single-cell RNA-seq analysis reveals BHLHE40-driven pro-tumour neutrophils with hyperactivated glycolysis in pancreatic tumour microenvironment[J]. Gut, 2023, 72(5): 958-971.
doi: 10.1136/gutjnl-2021-326070 |
[39] |
BIANCHI A N, DE CASTRO SILVA I, DESHPANDE N U, et al. Cell-autonomous Cxcl1 sustains tolerogenic circuitries and stromal inflammation via neutrophil-derived TNF in pancreatic cancer[J]. Cancer Discov, 2023, 13(6): 1428-1453.
doi: 10.1158/2159-8290.CD-22-1046 pmid: 36946782 |
[40] |
TINTELNOT J, XU Y, LESKER T R, et al. Microbiota-derived 3-IAA influences chemotherapy efficacy in pancreatic cancer[J]. Nature, 2023, 615(7950): 168-174.
doi: 10.1038/s41586-023-05728-y |
[41] |
ZOU X, GUAN C, GAO J, et al. Tertiary lymphoid structures in pancreatic cancer: a new target for immunotherapy[J]. Front Immunol, 2023, 14: 1222719.
doi: 10.3389/fimmu.2023.1222719 |
[42] |
KINKER G S, VITIELLO G A F, DINIZ A B, et al. Mature tertiary lymphoid structures are key niches of tumour-specific immune responses in pancreatic ductal adenocarcinomas[J]. Gut, 2023, 72(10): 1927-1941.
doi: 10.1136/gutjnl-2022-328697 |
[43] |
ZOU X, LIN X, CHENG H, et al. Characterization of intratumoral tertiary lymphoid structures in pancreatic ductal adenocarcinoma: cellular properties and prognostic significance[J]. J Immunother Cancer, 2023, 11(6): e006698.
doi: 10.1136/jitc-2023-006698 |
[44] |
LIU X, HOGG G D, ZUO C, et al. Context-dependent activation of STING-interferon signaling by CD11b agonists enhances anti-tumor immunity[J]. Cancer Cell, 2023, 41(6): 1073-1090.e12.
doi: 10.1016/j.ccell.2023.04.018 pmid: 37236195 |
[45] |
HE F, TAY A H M, CALANDIGARY A, et al. FPR2 shapes an immune-excluded pancreatic tumor microenvironment and drives T-cell exhaustion in a sex-dependent manner[J]. Cancer Res, 2023, 83(10): 1628-1645.
doi: 10.1158/0008-5472.CAN-22-2932 pmid: 36919330 |
[46] |
ROHILA D, PARK I H, PHAM T V, et al. Syk inhibition reprograms tumor-associated macrophages and overcomes gemcitabine-induced immunosuppression in pancreatic ductal adenocarcinoma[J]. Cancer Res, 2023, 83(16): 2675-2689.
doi: 10.1158/0008-5472.CAN-22-3645 pmid: 37306759 |
[47] |
LEE Y E, GO G Y, KOH E Y, et al. Synergistic therapeutic combination with a CAF inhibitor enhances CAR-NK-mediated cytotoxicity via reduction of CAF-released IL-6[J]. J Immunother Cancer, 2023, 11(2): e006130.
doi: 10.1136/jitc-2022-006130 |
[48] |
WANG X D, SU S Y, ZHU Y Q, et al. Metabolic Reprogramming via ACOD1 depletion enhances function of human induced pluripotent stem cell-derived CAR-macrophages in solid tumors[J]. Nat Commun, 2023, 14(1): 5778.
doi: 10.1038/s41467-023-41470-9 pmid: 37723178 |
[49] |
FU S N, XU S K, ZHANG S B. The role of amino acid metabolism alterations in pancreatic cancer: from mechanism to application[J]. Biochim Biophys Acta Rev Cancer, 2023, 1878(3): 188893.
doi: 10.1016/j.bbcan.2023.188893 |
[50] |
REBELO A, KLEEFF J, SUNAMI Y. Cholesterol metabolism in pancreatic cancer[J]. Cancers (Basel), 2023, 15(21): 5177.
doi: 10.3390/cancers15215177 |
[51] |
PARK S J, YOO H C, AHN E, et al. Enhanced glutaminolysis drives hypoxia-induced chemoresistance in pancreatic cancer[J]. Cancer Res, 2023, 83(5): 735-752.
doi: 10.1158/0008-5472.CAN-22-2045 pmid: 36594876 |
[52] |
NWOSU Z C, WARD M H, SAJJAKULNUKIT P, et al. Uridine-derived ribose fuels glucose-restricted pancreatic cancer[J]. Nature, 2023, 618(7963): 151-158.
doi: 10.1038/s41586-023-06073-w |
[53] |
CHEN M, CEN K L, SONG Y J, et al. NUSAP1-LDHA-Glycolysis-Lactate feedforward loop promotes Warburg effect and metastasis in pancreatic ductal adenocarcinoma[J]. Cancer Lett, 2023, 567: 216285.
doi: 10.1016/j.canlet.2023.216285 |
[54] |
BARTMAN C R, WEILANDT D R, SHEN Y H, et al. Slow TCA flux and ATP production in primary solid tumours but not metastases[J]. Nature, 2023, 614(7947): 349-357.
doi: 10.1038/s41586-022-05661-6 |
[55] |
SCHUURMANS M, ALVES N, VENDITTELLI P, et al. Artificial intelligence in pancreatic ductal adenocarcinoma imaging: a commentary on potential future applications[J]. Gastroenterology, 2023, 165(2): 309-316.
doi: 10.1053/j.gastro.2023.04.003 |
[56] |
BIAN Y, ZHENG Z, FANG X, et al. Artificial intelligence to predict lymph node metastasis at CT in pancreatic ductal adenocarcinoma[J]. Radiology, 2023, 306(1): 160-169.
doi: 10.1148/radiol.220329 |
[57] |
ZHANG C Y, XU J, TANG R, et al. Novel research and future prospects of artificial intelligence in cancer diagnosis and treatment[J]. J Hematol Oncol, 2023, 16(1): 114.
doi: 10.1186/s13045-023-01514-5 |
[58] |
CORTI C, COBANAJ M, DEE E C, et al. Artificial intelligence in cancer research and precision medicine: applications, limitations and priorities to drive transformation in the delivery of equitable and unbiased care[J]. Cancer Treat Rev, 2023, 112: 102498.
doi: 10.1016/j.ctrv.2022.102498 |
[59] | LIN Q, ZHENG S Y, YU X J, et al. Standard pancreatoduodenectomy versus extended pancreatoduodenectomy with modified retroperitoneal nerve resection in patients with pancreatic head cancer: a multicenter randomized controlled trial[J]. Cancer Commun (Lond), 2023, 43(2): 257-275. |
[60] |
FARNELL M B, PEARSON R K, SARR M G, et al. A prospective randomized trial comparing standard pancreatoduodenectomy with pancreatoduodenectomy with extended lymphadenectomy in resectable pancreatic head adenocarcinoma[J]. Surgery, 2005, 138(4): 618-628; discussion 628-630.
doi: 10.1016/j.surg.2005.06.044 |
[61] |
NIMURA Y, NAGINO M, TAKAO S, et al. Standard versus extended lymphadenectomy in radical pancreatoduodenectomy for ductal adenocarcinoma of the head of the pancreas: Long-term results of a Japanese multicenter randomized controlled trial[J]. J Hepatobiliary Pancreat Sci, 2012, 19(3): 230-241.
doi: 10.1007/s00534-011-0466-6 pmid: 22038501 |
[62] |
JANG J Y, KANG M J, HEO J S, et al. A prospective randomized controlled study comparing outcomes of standard resection and extended resection, including dissection of the nerve plexus and various lymph nodes, in patients with pancreatic head cancer[J]. Ann Surg, 2014, 259(4): 656-664.
doi: 10.1097/SLA.0000000000000384 |
[63] | WANG W, LOU W, XU Z, et al. Long-term outcomes of standard versus extended lymphadenectomy in pancreatoduodenectomy for pancreatic ductal adenocarcinoma: a Chinese multi-center prospective randomized controlled trial[J]. J Adv Res, 2023, 49: 151-157. |
[64] |
MEIERHOFER C, FUEGGER R, BIEBL M, et al. Pancreatic fistulas: current evidence and strategy-a narrative review[J]. J Clin Med, 2023, 12(15): 5046.
doi: 10.3390/jcm12155046 |
[65] |
GIULIANI T, PERRI G, KANG R, et al. Current perioperative care in pancreatoduodenectomy: a step-by-step surgical roadmap from first visit to discharge[J]. Cancers (Basel), 2023, 15(9): 2499.
doi: 10.3390/cancers15092499 |
[66] |
VAN DEN BROEK B L J, ZWART M J W, BONSING B A, et al. Video grading of pancreatic anastomoses during robotic pancreatoduodenectomy to assess both learning curve and the risk of pancreatic fistula[J]. Ann Surg, 2023, 278(5): e1048-e1054.
doi: 10.1097/SLA.0000000000005796 |
[67] |
SCHOUTEN T J, HENRY A C, SMITS F J, et al. Risk models for developing pancreatic fistula after pancreatoduodenectomy: validation in a nationwide prospective cohort[J]. Ann Surg, 2023, 278(6): 1001-1008.
doi: 10.1097/SLA.0000000000005824 |
[68] |
SCHUH F, MIHALJEVIC A L, PROBST P, et al. A simple classification of pancreatic duct size and texture predicts postoperative pancreatic fistula: a classification of the international study group of pancreatic surgery[J]. Ann Surg, 2023, 277(3): e597-e608.
doi: 10.1097/SLA.0000000000004855 |
[69] |
STOOP T F, BERGQUIST E, THEIJSE R T, et al. Systematic review and meta-analysis of the role of total pancreatectomy as an alternative to pancreatoduodenectomy in patients at high risk for postoperative pancreatic fistula: is it a justifiable indication?[J]. Ann Surg, 2023, 278(4): e702-e711.
doi: 10.1097/SLA.0000000000005895 pmid: 37161977 |
[70] |
ELLIS R J, BRAJCICH B C, BERTENS K A, et al. Association between biliary pathogens, surgical site infection, and pancreatic fistula: results of a randomized trial of perioperative antibiotic prophylaxis in patients undergoing pancreatoduodenectomy[J]. Ann Surg, 2023, 278(3): 310-319.
doi: 10.1097/SLA.0000000000005955 pmid: 37314221 |
[71] |
SPRINGFELD C, FERRONE C R, KATZ M H G, et al. Neoadjuvant therapy for pancreatic cancer[J]. Nat Rev Clin Oncol, 2023, 20(5): 318-337.
doi: 10.1038/s41571-023-00746-1 pmid: 36932224 |
[72] |
VERSTEIJNE E, VAN DAM J L, SUKER M, et al. Neoadjuvant chemoradiotherapy versus upfront surgery for resectable and borderline resectable pancreatic cancer: long-term results of the Dutch randomized PREOPANC trial[J]. J Clin Oncol, 2022, 40(11): 1220-1230.
doi: 10.1200/JCO.21.02233 |
[73] |
MOTOI F, KOSUGE T, UENO H, et al. Randomized phase Ⅱ/Ⅲ trial of neoadjuvant chemotherapy with gemcitabine and S-1 versus upfront surgery for resectable pancreatic cancer (Prep-02/JSAP05)[J]. Jpn J Clin Oncol, 2019, 49(2): 190-194.
doi: 10.1093/jjco/hyy190 |
[74] |
YAMAGUCHI J, YOKOYAMA Y, FUJII T, et al. Results of a phase Ⅱ study on the use of neoadjuvant chemotherapy (FOLFIRINOX or GEM/nab-PTX) for borderline-resectable pancreatic cancer (NUPAT-01)[J]. Ann Surg, 2022, 275(6): 1043-1049.
doi: 10.1097/SLA.0000000000005430 |
[75] |
GHANEH P, PALMER D, CICCONI S, et al. Immediate surgery compared with short-course neoadjuvant gemcitabine plus capecitabine, FOLFIRINOX, or chemoradiotherapy in patients with borderline resectable pancreatic cancer (ESPAC5): a four-arm, multicentre, randomised, phase 2 trial[J]. Lancet Gastroenterol Hepatol, 2023, 8(2): 157-168.
doi: 10.1016/S2468-1253(22)00348-X |
[76] |
SMAGLO B G. Role for neoadjuvant systemic therapy for potentially resectable pancreatic cancer[J]. Cancers (Basel), 2023, 15(8): 2377.
doi: 10.3390/cancers15082377 |
[77] |
SEUFFERLEIN T, UHL W, KORNMANN M, et al. Perioperative or only adjuvant gemcitabine plus nab-paclitaxel for resectable pancreatic cancer (NEONAX)-a randomized phase Ⅱ trial of the AIO pancreatic cancer group[J]. Ann Oncol, 2023, 34(1): 91-100.
doi: 10.1016/j.annonc.2022.09.161 |
[78] |
SUGAWARA T, RODRIGUEZ FRANCO S, SHERMAN S, et al. Association of adjuvant chemotherapy in patients with resected pancreatic adenocarcinoma after multiagent neoadjuvant chemotherapy[J]. JAMA Oncol, 2023, 9(3): 316-323.
doi: 10.1001/jamaoncol.2022.5808 |
[79] |
WAINBERG Z A, MELISI D, MACARULLA T, et al. NALIRIFOX versus nab-paclitaxel and gemcitabine in treatment-naive patients with metastatic pancreatic ductal adenocarcinoma (NAPOLI 3): a randomised, open-label, phase 3 trial[J]. Lancet, 2023, 402(10409): 1272-1281.
doi: 10.1016/S0140-6736(23)01366-1 pmid: 37708904 |
[80] |
HILMI M, DELAYE M, MUZZOLINI M, et al. The immunological landscape in pancreatic ductal adenocarcinoma and overcoming resistance to immunotherapy[J]. Lancet Gastroenterol Hepatol, 2023, 8(12): 1129-1142.
doi: 10.1016/S2468-1253(23)00207-8 |
[81] |
CHEN I M, DONIA M, CHAMBERLAIN C A, et al. Phase 2 study of ipilimumab, nivolumab, and tocilizumab combined with stereotactic body radiotherapy in patients with refractory pancreatic cancer (TRIPLE-R)[J]. Eur J Cancer, 2023, 180: 125-133.
doi: 10.1016/j.ejca.2022.11.035 pmid: 36592507 |
[82] |
BENDELL J, LORUSSO P, OVERMAN M, et al. First-in-human study of oleclumab, a potent, selective anti-CD73 monoclonal antibody, alone or in combination with durvalumab in patients with advanced solid tumors[J]. Cancer Immunol Immunother, 2023, 72(7): 2443-2458.
doi: 10.1007/s00262-023-03430-6 pmid: 37016126 |
[83] |
KO A H, KIM K P, SIVEKE J T, et al. Atezolizumab plus PEGPH20 versus chemotherapy in advanced pancreatic ductal adenocarcinoma and gastric cancer: MORPHEUS phase Ⅰb/Ⅱ umbrella randomized study platform[J]. Oncologist, 2023, 28(6): 553-e472.
doi: 10.1093/oncolo/oyad022 |
[84] |
LEMECH C, DREDGE K, BAMPTON D, et al. Phase Ⅰb open-label, multicenter study of pixatimod, an activator of TLR9, in combination with nivolumab in subjects with microsatellite-stable metastatic colorectal cancer, metastatic pancreatic ductal adenocarcinoma and other solid tumors[J]. J Immunother Cancer, 2023, 11(1): e006136.
doi: 10.1136/jitc-2022-006136 |
[85] |
ROJAS L A, SETHNA Z, SOARES K C, et al. Personalized RNA neoantigen vaccines stimulate T cells in pancreatic cancer[J]. Nature, 2023, 618(7963): 144-150.
doi: 10.1038/s41586-023-06063-y |
[86] |
ZHU H, WEI M, XU J, et al. PARP inhibitors in pancreatic cancer: molecular mechanisms and clinical applications[J]. Mol Cancer, 2020, 19(1): 49.
doi: 10.1186/s12943-020-01167-9 pmid: 32122376 |
[87] |
NEVALA-PLAGEMANN C, HIDALGO M, GARRIDO-LAGUNA I. From state-of-the-art treatments to novel therapies for advanced-stage pancreatic cancer[J]. Nat Rev Clin Oncol, 2020, 17(2): 108-123.
doi: 10.1038/s41571-019-0281-6 |
[88] |
NAGASAKA M, POTUGARI B, NGUYEN A, et al. KRAS inhibitors- yes but what next? Direct targeting of KRAS- vaccines, adoptive T cell therapy and beyond[J]. Cancer Treat Rev, 2021, 101: 102309.
doi: 10.1016/j.ctrv.2021.102309 |
[89] |
WOOD L D, CANTO M I, JAFFEE E M, et al. Pancreatic cancer: pathogenesis, screening, diagnosis, and treatment[J]. Gastroenterology, 2022, 163(2): 386-402.e1.
doi: 10.1053/j.gastro.2022.03.056 |
[90] |
QIAN Y, GONG Y, FAN Z, et al. Molecular alterations and targeted therapy in pancreatic ductal adenocarcinoma[J]. J Hematol Oncol, 2020, 13(1): 130.
doi: 10.1186/s13045-020-00958-3 |
[91] |
SCHULTHEIS B, REUTER D, EBERT M P, et al. Gemcitabine combined with the monoclonal antibody nimotuzumab is an active first-line regimen in KRAS wildtype patients with locally advanced or metastatic pancreatic cancer: a multicenter, randomized phase Ⅱb study[J]. Ann Oncol, 2017, 28(10): 2429-2435.
doi: 10.1093/annonc/mdx343 |
[92] |
QIN S K, LI J, BAI Y X, et al. Nimotuzumab plus gemcitabine for K-ras wild-type locally advanced or metastatic pancreatic cancer[J]. J Clin Oncol, 2023, 41(33): 5163-5173.
doi: 10.1200/JCO.22.02630 |
[93] |
SHAIB W L, MANALI R, LIU Y, et al. Phase Ⅱ randomised, double-blind study of mFOLFIRINOX plus ramucirumab versus mFOLFIRINOX plus placebo in advanced pancreatic cancer patients (HCRN GI14-198)[J]. Eur J Cancer, 2023, 189: 112847.
doi: 10.1016/j.ejca.2023.02.030 |
[94] |
HUFFMAN B M, BASU MALLICK A, HORICK N K, et al. Effect of a MUC5AC antibody (NPC-1C) administered with second-line gemcitabine and nab-paclitaxel on the survival of patients with advanced pancreatic ductal adenocarcinoma: a randomized clinical trial[J]. JAMA Netw Open, 2023, 6(1): e2249720.
doi: 10.1001/jamanetworkopen.2022.49720 |
[95] |
RODON AHNERT J, TAN D S, GARRIDO-LAGUNA I, et al. Avelumab or talazoparib in combination with binimetinib in metastatic pancreatic ductal adenocarcinoma: dose-finding results from phase Ⅰb of the JAVELIN PARP MEKi trial[J]. ESMO Open, 2023, 8(4): 101584.
doi: 10.1016/j.esmoop.2023.101584 |
[1] | HAO Xian, HUANG Jianjun, YANG Wenxiu, LIU Jinting, ZHANG Junhong, LUO Yubei, LI Qing, WANG Dahong, GAO Yuwei, TAN Fuyun, BO Li, ZHENG Yu, WANG Rong, FENG Jianglong, LI Jing, ZHAO Chunhua, DOU Xiaowei. Establishment of primary breast cancer cell line as new model for drug screening and basic research [J]. China Oncology, 2024, 34(6): 561-570. |
[2] | CHEN Hong, CAO Zhiyun. Recent progress in the construction and application of patient-derived pancreatic cancer organoid models [J]. China Oncology, 2024, 34(6): 590-597. |
[3] | ZHANG Qi, XIU Bingqiu, WU Jiong. Progress of important clinical research of breast cancer in China in 2023 [J]. China Oncology, 2024, 34(2): 135-142. |
[4] | WANG Zhaobu, LI Xing, YU Xinmiao, JIN Feng. Important research progress in clinical practice for early breast cancer in 2023 [J]. China Oncology, 2024, 34(2): 151-160. |
[5] | TAN Xiaolang, YAO Sha, WANG Guihua, PENG Luogen. Research on uPAR promoting proliferation, migration, and chemoresistance of pancreatic cancer by inhibiting autophagy via MAPK signaling [J]. China Oncology, 2024, 34(10): 944-956. |
[6] | QU Ning, WANG Yuting, MA Ben, WANG Yu. Advances in basic research, clinical diagnosis and treatment of thyroid cancer in 2022 [J]. China Oncology, 2023, 33(5): 423-430. |
[7] | JIANG Jinling, ZHOU Chenfei, WANG Chao, ZHAO Liqin, WU Junwei, ZHANG Jun. Advanced progress in research and diagnosis of gastric cancer in 2022 [J]. China Oncology, 2023, 33(4): 303-314. |
[8] | ZHAO Haichao, GAO Qiang. Progress in research, diagnosis, and treatment of hepatocellular carcinoma in 2022 [J]. China Oncology, 2023, 33(4): 315-326. |
[9] | TIAN Xi, XU Wenhao, ZHU Shuxuan, AIHETAIMUJIANG•Anwaier, SU Jiaqi, YE Shiqi, QU Yuanyuan, SHI Guohai, ZHANG Hailiang, YE Dingwei. Advances in the research, diagnosis and treatment of renal cell carcinoma in 2022 [J]. China Oncology, 2023, 33(3): 191-200. |
[10] | ZHENG Shengfeng, ZHU Yiping, YE Dingwei. Advances in basic research, clinical diagnosis and treatment of bladder cancer in 2022 [J]. China Oncology, 2023, 33(3): 201-209. |
[11] | PAN Jian, ZHU Yao, DAI Bo, YE Dingwei. Advances in basic research, clinical diagnosis and treatment of prostate cancer in 2022 [J]. China Oncology, 2023, 33(3): 210-217. |
[12] | ZENG Cheng, ZHANG Jian. Leading research progress and prospect of antibody-drug conjugate in pancreatic cancer in 2022 [J]. China Oncology, 2023, 33(3): 235-240. |
[13] | FU Qingsheng, JIN Lei, ZHANG Xudong, XU Yingchen, ZHU Chunfu, QIN Xihu, WU Baoqiang. Effect of tRF-Pro-CGG on the biological behavior of mouse pancreatic cancer cells and its molecular mechanism [J]. China Oncology, 2023, 33(3): 241-249. |
[14] | YUE Ming, WANG Liwei, CUI Jiujie. Research progress on the mechanism of organ-specific lung metastasis in pancreatic cancer [J]. China Oncology, 2023, 33(11): 1026-1031. |
[15] | JIA Yuming, YE Zeng, DENG Yanli, LI Shengchao, ZHANG Zhilei, WANG Chao, XU Xiaowu, QIN Yi, PENG Li. The research on FBW7 gene enhances antitumor effect of paclitaxel on pancreatic cancer through GSDME-mediated pyroptosis [J]. China Oncology, 2023, 33(10): 889-897. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
沪ICP备12009617
Powered by Beijing Magtech Co. Ltd