China Oncology ›› 2025, Vol. 35 ›› Issue (1): 1-11.doi: 10.19401/j.cnki.1007-3639.2025.01.001
• Specialist' Commentary • Previous Articles Next Articles
WANG Ting(), QIN Yi, XU Xiaowu, YU Xianjun(
)
Received:
2024-12-31
Revised:
2025-01-21
Online:
2025-01-30
Published:
2025-02-17
Contact:
YU Xianjun
Supported by:
Share article
CLC Number:
WANG Ting, QIN Yi, XU Xiaowu, YU Xianjun. New advances in basic research, clinical diagnosis and treatment of pancreatic cancer in 2024[J]. China Oncology, 2025, 35(1): 1-11.
[1] | SIEGEL R L, GIAQUINTO A N, JEMAL A. Cancer statistics, 2024[J]. CA Cancer J Clin, 2024, 74(1): 12-49. |
[2] | BRAY F, LAVERSANNE M, SUNG H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2024, 74(3): 229-263. |
[3] | WU Y, HE S, CAO M, et al. Comparative analysis of cancer statistics in China and the United States in 2024[J]. Chin Med J (Engl), 2024, 137(24): 3093-3100. |
[4] |
KAMISAWA T, WOOD L D, ITOI T, et al. Pancreatic cancer[J]. Lancet, 2016, 388(10039): 73-85.
doi: 10.1016/S0140-6736(16)00141-0 pmid: 26830752 |
[5] | MAZER B L, LEE J W, ROBERTS N J, et al. Screening for pancreatic cancer has the potential to save lives, but is it practical?[J]. Expert Rev Gastroenterol Hepatol, 2023, 17(6): 555-574. |
[6] |
PREVENTIVE SERVICES TASK FORCE U S, OWENS D K, DAVIDSON K W, et al. Screening for pancreatic cancer: US preventive services task force reaffirmation recommendation statement[J]. JAMA, 2019, 322(5): 438-444.
doi: 10.1001/jama.2019.10232 pmid: 31386141 |
[7] | DBOUK M, KATONA B W, BRAND R E, et al. The multicenter cancer of pancreas screening study: impact on stage and survival[J]. J Clin Oncol, 2022, 40(28): 3257-3266. |
[8] |
VASEN H, IBRAHIM I, PONCE C G, et al. Benefit of surveillance for pancreatic cancer in high-risk individuals: outcome of long-term prospective follow-up studies from three European expert centers[J]. J Clin Oncol, 2016, 34(17): 2010-2019.
doi: 10.1200/JCO.2015.64.0730 pmid: 27114589 |
[9] |
CANTO M I, ALMARIO J A, SCHULICK R D, et al. Risk of neoplastic progression in individuals at high risk for pancreatic cancer undergoing long-term surveillance[J]. Gastroenterology, 2018, 155(3): 740-751.e2.
doi: S0016-5085(18)34568-2 pmid: 29803839 |
[10] |
CALDERWOOD A H, SAWHNEY M S, THOSANI N C, et al. American Society for Gastrointestinal Endoscopy guideline on screening for pancreatic cancer in individuals with genetic susceptibility: methodology and review of evidence[J]. Gastrointest Endosc, 2022, 95(5): 827-854.e3.
doi: 10.1016/j.gie.2021.12.002 pmid: 35183359 |
[11] |
BLACKFORD A L, CANTO M I, DBOUK M, et al. Pancreatic cancer surveillance and survival of high-risk individuals[J]. JAMA Oncol, 2024, 10(8): 1087-1096.
doi: 10.1001/jamaoncol.2024.1930 pmid: 38959011 |
[12] | RAMÍREZ-MALDONADO E, LÓPEZ GORDO S, MAJOR BRANCO R P, et al. Clinical application of liquid biopsy in pancreatic cancer: a narrative review[J]. Int J Mol Sci, 2024, 25(3): 1640. |
[13] | LAN B, ZENG S Y, GRÜTZMANN R, et al. The role of exosomes in pancreatic cancer[J]. Int J Mol Sci, 2019, 20(18): 4332. |
[14] |
LUO G P, LIU C, GUO M, et al. Potential biomarkers in lewis negative patients with pancreatic cancer[J]. Ann Surg, 2017, 265(4): 800-805.
doi: 10.1097/SLA.0000000000001741 pmid: 28267695 |
[15] |
FAHRMANN J F, MAX SCHMIDT C, MAO X Y, et al. Lead-time trajectory of CA19-9 as an anchor marker for pancreatic cancer early detection[J]. Gastroenterology, 2021, 160(4): 1373-1383.e6.
doi: 10.1053/j.gastro.2020.11.052 pmid: 33333055 |
[16] | RAHBARGHAZI R, JABBARI N, SANI N A, et al. Tumor-derived extracellular vesicles: reliable tools for cancer diagnosis and clinical applications[J]. Cell Commun Signal, 2019, 17(1): 73. |
[17] | LI H, CHIANG C L, KWAK K J, et al. Extracellular vesicular analysis of glypican 1 mRNA and protein for pancreatic cancer diagnosis and prognosis[J]. Adv Sci (Weinh), 2024, 11(11): e2306373. |
[18] |
LIU M C, OXNARD G R, KLEIN E A, et al. Sensitive and specific multi-cancer detection and localization using methylation signatures in cell-free DNA[J]. Ann Oncol, 2020, 31(6): 745-759.
doi: 10.1016/j.annonc.2020.02.011 pmid: 33506766 |
[19] |
DOR Y, CEDAR H. Principles of DNA methylation and their implications for biology and medicine[J]. Lancet, 2018, 392(10149): 777-786.
doi: S0140-6736(18)31268-6 pmid: 30100054 |
[20] |
SCHRAG D, BEER T M, MCDONNELL C H 3rd, et al. Blood-based tests for multicancer early detection (PATHFINDER): a prospective cohort study[J]. Lancet, 2023, 402(10409): 1251-1260.
doi: 10.1016/S0140-6736(23)01700-2 pmid: 37805216 |
[21] | 中国抗癌协会肿瘤标志专业委员会. 肿瘤DNA甲基化标志物检测及临床应用专家共识(2024版)[J]. 中国癌症防治杂志, 2024, 16(2): 129-142. |
Committee of Tumor Biomarker of China Anti-Cancer Association. Expert consensus on the detection and clinical application of tumor DNA methylation biomarkers (2024 edition)[J]. Chin J of Oncol Prev and Treat, 2024, 16(2): 129-142. | |
[22] | BEN-AMI R, WANG Q L, ZHANG J M, et al. Protein biomarkers and alternatively methylated cell-free DNA detect early stage pancreatic cancer[J]. Gut, 2024, 73(4): 639-648. |
[23] | CAO K, XIA Y D, YAO J W, et al. Large-scale pancreatic cancer detection via non-contrast CT and deep learning[J]. Nat Med, 2023, 29(12): 3033-3043. |
[24] | MAITRA A, TOPOL E J. Early detection of pancreatic cancer and AI risk partitioning[J]. Lancet, 2024, 403(10435): 1438. |
[25] | DAHER H, PUNCHAYIL S A, ISMAIL A A E, et al. Advancements in pancreatic cancer detection: integrating biomarkers, imaging technologies, and machine learning for early diagnosis[J]. Cureus, 2024, 16(3): e56583. |
[26] | BRAXTON A M, KIEMEN A L, GRAHN M P, et al. 3D genomic mapping reveals multifocality of human pancreatic precancers[J]. Nature, 2024, 629(8012): 679-687. |
[27] | DREYER S B, UPSTILL-GODDARD R, LEGRINI A, et al. Genomic and molecular analyses identify molecular subtypes of pancreatic cancer recurrence[J]. Gastroenterology, 2022, 162(1): 320-324.e4. |
[28] |
PUNEKAR S R, VELCHETI V, NEEL B G, et al. The current state of the art and future trends in RAS-targeted cancer therapies[J]. Nat Rev Clin Oncol, 2022, 19(10): 637-655.
doi: 10.1038/s41571-022-00671-9 pmid: 36028717 |
[29] |
LUO J. KRAS mutation in pancreatic cancer[J]. Semin Oncol, 2021, 48(1): 10-18.
doi: 10.1053/j.seminoncol.2021.02.003 pmid: 33676749 |
[30] | MCINTYRE C A, GRIMONT A, PARK J, et al. Distinct clinical outcomes and biological features of specific KRAS mutants in human pancreatic cancer[J]. Cancer Cell, 2024, 42(9): 1614-1629.e5. |
[31] | MAHADEVAN K K, MCANDREWS K M, LEBLEU V S, et al. KRASG12D inhibition reprograms the microenvironment of early and advanced pancreatic cancer to promote FAS-mediated killing by CD8+ T cells[J]. Cancer Cell, 2023, 41(9): 1606-1620.e8. |
[32] | Single-agent divarasib (GDC-6036) in solid tumors with a KRAS G12C mutation-PubMed[J/OL]. [2024-12-19]. https://pubmed.ncbi.nlm.nih.gov/37611121/. |
[33] | STRICKLER J H, SATAKE H, GEORGE T J, et al. Sotorasib in KRAS advanced pancreatic cancer[J]. N Engl J Med, 2023, 388(1): 33-43. |
[34] |
ZHENG Q H, ZHANG Z Y, GUILEY K Z, et al. Strain-release alkylation of Asp12 enables mutant selective targeting of K-Ras-G12D[J]. Nat Chem Biol, 2024, 20: 1114-1122.
doi: 10.1038/s41589-024-01565-w pmid: 38443470 |
[35] | HALLIN J, BOWCUT V, CALINISAN A, et al. Anti-tumor efficacy of a potent and selective non-covalent KRASG12D inhibitor[J]. Nat Med, 2022, 28(10): 2171-2182. |
[36] | WANG X L, ALLEN S, BLAKE J F, et al. Identification of MRTX1133, a noncovalent, potent, and selective KRASG12D inhibitor[J]. J Med Chem, 2022, 65(4): 3123-3133. |
[37] | WEI D Y, WANG L, ZUO X S, et al. A small molecule with big impact: MRTX1133 targets the KRAS G12D mutation in pancreatic cancer[J]. Clin Cancer Res, 2024, 30(4): 655-662. |
[38] | ZHOU C C, LI C Y, LUO L B, et al. Anti-tumor efficacy of HRS-4642 and its potential combination with proteasome inhibition in KRAS G12D-mutant cancer[J]. Cancer Cell, 2024, 42(7): 1286-1300.e8. |
[39] | KIM D, HERDEIS L, RUDOLPH D, et al. Pan-KRAS inhibitor disables oncogenic signalling and tumour growth[J]. Nature, 2023, 619(7968): 160-166. |
[40] | WASKO U N, JIANG J J, DALTON T C, et al. Tumour-selective activity of RAS-GTP inhibition in pancreatic cancer[J]. Nature, 2024, 629(8013): 927-936. |
[41] | JIANG J J, JIANG L Y, MALDONATO B J, et al. Translational and therapeutic evaluation of RAS-GTP inhibition by RMC-6236 in RAS-driven cancers[J]. Cancer Discov, 2024, 14(6): 994-1017. |
[42] |
EVAN T, WANG V M, BEHRENS A. The roles of intratumour heterogeneity in the biology and treatment of pancreatic ductal adenocarcinoma[J]. Oncogene, 2022, 41(42): 4686-4695.
doi: 10.1038/s41388-022-02448-x pmid: 36088504 |
[43] |
COLLISSON E A, BAILEY P, CHANG D K, et al. Molecular subtypes of pancreatic cancer[J]. Nat Rev Gastroenterol Hepatol, 2019, 16(4): 207-220.
doi: 10.1038/s41575-019-0109-y pmid: 30718832 |
[44] | PAPARGYRIOU A, NAJAJREH M, COOK D P, et al. Heterogeneity-driven phenotypic plasticity and treatment response in branched-organoid models of pancreatic ductal adenocarcinoma[J]. Nat Biomed Eng, 2024. |
[45] | CHANG Y, CHEN Q, LI H, et al. The UBE2F-CRL5ASB11-DIRAS2 axis is an oncogene and tumor suppressor cascade in pancreatic cancer cells[J]. Dev Cell, 2024, 59(10): 1317-1332.e5. |
[46] |
YANG J S, REN B, YANG G, et al. The enhancement of glycolysis regulates pancreatic cancer metastasis[J]. Cell Mol Life Sci, 2020, 77(2): 305-321.
doi: 10.1007/s00018-019-03278-z pmid: 31432232 |
[47] | EL KAOUTARI A, FRAUNHOFFER N A, AUDEBERT S, et al. Pancreatic ductal adenocarcinoma ubiquitination profiling reveals specific prognostic and theranostic markers[J]. EBioMedicine, 2023, 92: 104634. |
[48] |
LIN J, LIU G, CHEN L D, et al. Targeting lactate-related cell cycle activities for cancer therapy[J]. Semin Cancer Biol, 2022, 86(Pt 3): 1231-1243.
doi: 10.1016/j.semcancer.2022.10.009 pmid: 36328311 |
[49] | LI H D, SUN L C, GAO P, et al. Lactylation in cancer: current understanding and challenges[J]. Cancer Cell, 2024, 42(11): 1803-1807. |
[50] | LI F, SI W Z, XIA L, et al. Positive feedback regulation between glycolysis and histone lactylation drives oncogenesis in pancreatic ductal adenocarcinoma[J]. Mol Cancer, 2024, 23(1): 90. |
[51] |
NIU N N, SHEN X Q, WANG Z, et al. Tumor cell-intrinsic epigenetic dysregulation shapes cancer-associated fibroblasts heterogeneity to metabolically support pancreatic cancer[J]. Cancer Cell, 2024, 42(5): 869-884.e9.
doi: 10.1016/j.ccell.2024.03.005 pmid: 38579725 |
[52] | HO W J, JAFFEE E M, ZHENG L. The tumour microenvironment in pancreatic cancer: clinical challenges and opportunities[J]. Nat Rev Clin Oncol, 2020, 17: 527-540. |
[53] | HUANG P W, GAO W N, FU C Y, et al. Clinical functional proteomics of intercellular signalling in pancreatic cancer[J]. Nature, 2025, 637: 726-735. |
[54] | UPADHRASTA S, ZHENG L. Strategies in developing immunotherapy for pancreatic cancer: recognizing and correcting multiple immune “defects” in the tumor microenvironment[J]. J Clin Med, 2019, 8(9): 1472. |
[55] | Immunotherapy for pancreatic cancer: barriers and breakthroughs-torphy-2018-annals of gastroenterological surgery-wiley online library[EB/OL]. [2024-12-19]. https://onlinelibrary.wiley.com/doi/10.1002/ags3.12176. |
[56] | YE X R, YU Y, ZHENG X H, et al. Clinical immunotherapy in pancreatic cancer[J]. Cancer Immunol Immunother, 2024, 73(4): 64. |
[57] | LIU R J, LI J N, LIU L, et al. Tumor-associated macrophages (TAMs): constructing an immunosuppressive microenvironment bridge for pancreatic ductal adenocarcinoma (PDAC)[J]. Cancer Pathog Ther, 2024. |
[58] | ZHENG H J, YANG X Z, HUANG N, et al. Chimeric antigen receptor macrophages targeting c-MET (CAR-M-c-MET) inhibit pancreatic cancer progression and improve cytotoxic chemotherapeutic efficacy[J]. Mol Cancer, 2024, 23(1): 270. |
[59] | Pancreatic cancer and cachexia-metabolic mechanisms and novel insights-PubMed[EB/OL]. [2024-12-19]. https://pubmed.ncbi.nlm.nih.gov/32466362/. |
[60] | YULE M S, BROWN L R, WALLER R, et al. Cancer cachexia[J]. BMJ, 2024, 387: e080040. |
[61] |
LIU M Y, REN Y, ZHOU Z J, et al. The crosstalk between macrophages and cancer cells potentiates pancreatic cancer cachexia[J]. Cancer Cell, 2024, 42(5): 885-903.e4.
doi: 10.1016/j.ccell.2024.03.009 pmid: 38608702 |
[62] |
MIZRAHI J D, SURANA R, VALLE J W, et al. Pancreatic cancer[J]. Lancet, 2020, 395(10242): 2008-2020.
doi: S0140-6736(20)30974-0 pmid: 32593337 |
[63] |
STOOP T F, THEIJSE R T, SEELEN L W F, et al. Preoperative chemotherapy, radiotherapy and surgical decision-making in patients with borderline resectable and locally advanced pancreatic cancer[J]. Nat Rev Gastroenterol Hepatol, 2024, 21(2): 101-124.
doi: 10.1038/s41575-023-00856-2 pmid: 38036745 |
[64] |
HE J X, LV N, YANG Z Y, et al. Comparing upfront surgery with neoadjuvant treatments in patients with resectable, borderline resectable or locally advanced pancreatic cancer: a systematic review and network meta-analysis of randomized clinical trials[J]. Int J Surg, 2024, 110(6): 3900-3909.
doi: 10.1097/JS9.0000000000001313 pmid: 38935819 |
[65] | CONROY T, HAMMEL P, HEBBAR M, et al. FOLFIRINOX or gemcitabine as adjuvant therapy for pancreatic cancer[J]. N Engl J Med, 2018, 379(25): 2395-2406. |
[66] |
NEOPTOLEMOS J P, PALMER D H, GHANEH P, et al. Comparison of adjuvant gemcitabine and capecitabine with gemcitabine monotherapy in patients with resected pancreatic cancer (ESPAC-4): a multicentre, open-label, randomised, phase 3 trial[J]. Lancet, 2017, 389(10073): 1011-1024.
doi: S0140-6736(16)32409-6 pmid: 28129987 |
[67] | CONROY T, DESSEIGNE F, YCHOU M, et al. FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer[J]. N Engl J Med, 2011, 364(19): 1817-1825. |
[68] |
SUKER M, BEUMER B R, SADOT E, et al. FOLFIRINOX for locally advanced pancreatic cancer: a systematic review and patient-level meta-analysis[J]. Lancet Oncol, 2016, 17(6): 801-810.
doi: S1470-2045(16)00172-8 pmid: 27160474 |
[69] | LABORI K J, BRATLIE S O, ANDERSSON B, et al. Neoadjuvant FOLFIRINOX versus upfront surgery for resectable pancreatic head cancer (NORPACT-1): a multicentre, randomised, phase 2 trial[J]. Lancet Gastroenterol Hepatol, 2024, 9(3): 205-217. |
[70] | GOLAN T, KINDLER H L, PARK J O, et al. Geographic and ethnic heterogeneity of germline BRCA1 or BRCA2 mutation prevalence among patients with metastatic pancreatic cancer screened for entry into the POLO trial[J]. J Clin Oncol, 2020, 38(13): 1442-1454. |
[71] | National Comprehensive Cancer Network. Pancreatic adenocarcinoma, version 2.2024. NCCN clinical practice guidelines in oncology[EB/OL]. [2024-12-19]. https://www.nccn.org/guidelines/guidelines-detail?category=1&id=1455. |
[72] | XIAO M M, TANG R, PAN H Q, et al. TPX2 serves as a novel target for expanding the utility of PARPi in pancreatic cancer through conferring synthetic lethality[J]. Gut, 2024: gutjnl-2024-332782. |
[73] | GE W Y, WANG Y L, QUAN M, et al. Activation of the PI3K/AKT signaling pathway by ARNTL2 enhances cellular glycolysis and sensitizes pancreatic adenocarcinoma to erlotinib[J]. Mol Cancer, 2024, 23(1): 48. |
[74] | MOORE M J, GOLDSTEIN D, HAMM J, et al. Erlotinib plus gemcitabine compared with gemcitabine alone in patients with advanced pancreatic cancer: a phase Ⅲ trial of the National Cancer Institute of Canada Clinical Trials Group[J]. J Clin Oncol, 2007, 25(15): 1960-1966. |
[75] | CREEDEN J F, SEVIER J, ZHANG J T, et al. Smart exosomes enhance PDAC targeted therapy[J]. J Control Release, 2024, 368: 413-429. |
[76] | TIMMER F E F, GEBOERS B, RUARUS A H, et al. MRI-guided stereotactic ablative body radiotherapy versus CT-guided percutaneous irreversible electroporation for locally advanced pancreatic cancer (CROSSFIRE): a single-centre, open-label, randomised phase 2 trial[J]. Lancet Gastroenterol Hepatol, 2024, 9(5): 448-459. |
[77] | TIMMER F E F, GEBOERS B, NIEUWENHUIZEN S, et al. Pancreatic cancer and immunotherapy: a clinical overview[J]. Cancers (Basel), 2021, 13(16): 4138. |
[78] | TAO J X, YANG G, ZHOU W C, et al. Targeting hypoxic tumor microenvironment in pancreatic cancer[J]. J Hematol Oncol, 2021, 14(1): 14. |
[79] | CHENG K, LI X Y, LV W R, et al. Spatial interactions of immune cells as potential predictors to efficacy of toripalimab plus chemotherapy in locally advanced or metastatic pancreatic ductal adenocarcinoma: a phase Ⅰb/Ⅱ trial[J]. Signal Transduct Target Ther, 2024, 9: 321. |
[80] | GOURGOU-BOURGADE S, BASCOUL-MOLLEVI C, DESSEIGNE F, et al. Impact of FOLFIRINOX compared with gemcitabine on quality of life in patients with metastatic pancreatic cancer: results from the PRODIGE 4/ACCORD 11 randomized trial[J]. J Clin Oncol, 2013, 31(1): 23-29. |
[81] | GIORDANO G, MILELLA M, LANDRISCINA M, et al. Prognostic analysis and outcomes of metastatic pancreatic cancer patients receiving nab-paclitaxel plus gemcitabine as second or later-line treatment[J]. Cancer Med, 2024, 13(12): e7345. |
[82] | VON HOFF D D, ERVIN T, ARENA F P, et al. Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine[J]. N Engl J Med, 2013, 369(18): 1691-1703. |
[83] | SHA H Z, TONG F, NI J Y, et al. First-line penpulimab (an anti-PD1 antibody) and anlotinib (an angiogenesis inhibitor) with nab-paclitaxel/gemcitabine (PAAG) in metastatic pancreatic cancer: a prospective, multicentre, biomolecular exploratory, phase Ⅱ trial[J]. Signal Transduct Target Ther, 2024, 9(1): 143. |
[84] | ROJAS L A, SETHNA Z, SOARES K C, et al. Personalized RNA neoantigen vaccines stimulate T cells in pancreatic cancer[J]. Nature, 2023, 618(7963): 144-150. |
[85] |
PANT S, WAINBERG Z A, WEEKES C D, et al. Lymph-node-targeted, mKRAS-specific amphiphile vaccine in pancreatic and colorectal cancer: the phase 1 AMPLIFY-201 trial[J]. Nat Med, 2024, 30(2): 531-542.
doi: 10.1038/s41591-023-02760-3 pmid: 38195752 |
[86] |
CLARK C E, HINGORANI S R, MICK R, et al. Dynamics of the immune reaction to pancreatic cancer from inception to invasion[J]. Cancer Res, 2007, 67(19): 9518-9527.
doi: 10.1158/0008-5472.CAN-07-0175 pmid: 17909062 |
[87] |
MUSHER B L, ROWINSKY E K, SMAGLO B G, et al. LOAd703, an oncolytic virus-based immunostimulatory gene therapy, combined with chemotherapy for unresectable or metastatic pancreatic cancer (LOKON001): results from arm 1 of a non-randomised, single-centre, phase 1/2 study[J]. Lancet Oncol, 2024, 25(4): 488-500.
doi: 10.1016/S1470-2045(24)00079-2 pmid: 38547893 |
[88] |
PARK W, CHAWLA A, O’REILLY E. Pancreatic cancer: a review[J]. JAMA, 2021, 326(9): 851-862.
doi: 10.1001/jama.2021.13027 pmid: 34547082 |
[89] | OSIPOV A, NIKOLIC O, GERTYCH A, et al. The Molecular Twin artificial-intelligence platform integrates multi-omic data to predict outcomes for pancreatic adenocarcinoma patients[J]. Nat Cancer, 2024, 5(2): 299-314. |
[1] | ZHANG Zhiyue, HE Huijing, SHAN Guangliang, LIN Yansong. Research progress in epidemiology and risk factors of thyroid cancer [J]. China Oncology, 2025, 35(1): 21-29. |
[2] | HAO Xian, HUANG Jianjun, YANG Wenxiu, LIU Jinting, ZHANG Junhong, LUO Yubei, LI Qing, WANG Dahong, GAO Yuwei, TAN Fuyun, BO Li, ZHENG Yu, WANG Rong, FENG Jianglong, LI Jing, ZHAO Chunhua, DOU Xiaowei. Establishment of primary breast cancer cell line as new model for drug screening and basic research [J]. China Oncology, 2024, 34(6): 561-570. |
[3] | CHEN Hong, CAO Zhiyun. Recent progress in the construction and application of patient-derived pancreatic cancer organoid models [J]. China Oncology, 2024, 34(6): 590-597. |
[4] | ZHANG Qi, XIU Bingqiu, WU Jiong. Progress of important clinical research of breast cancer in China in 2023 [J]. China Oncology, 2024, 34(2): 135-142. |
[5] | WANG Zhaobu, LI Xing, YU Xinmiao, JIN Feng. Important research progress in clinical practice for early breast cancer in 2023 [J]. China Oncology, 2024, 34(2): 151-160. |
[6] | REN Jiaqiang, WU Shuai, SU Tong, LI Jie, HAN Liang, WU Zheng. An exploratory study of INPP4B, a biomarker of gemcitabine chemoresistance in pancreatic cancer [J]. China Oncology, 2024, 34(12): 1090-1099. |
[7] | TAN Xiaolang, YAO Sha, WANG Guihua, PENG Luogen. Research on uPAR promoting proliferation, migration, and chemoresistance of pancreatic cancer by inhibiting autophagy via MAPK signaling [J]. China Oncology, 2024, 34(10): 944-956. |
[8] | LI Tianjiao, YE Longyun, JIN Kaizhou, WU Weiding, YU Xianjun. Advances in basic research, clinical diagnosis and treatment of pancreatic cancer in 2023 [J]. China Oncology, 2024, 34(1): 1-12. |
[9] | QU Ning, WANG Yuting, MA Ben, WANG Yu. Advances in basic research, clinical diagnosis and treatment of thyroid cancer in 2022 [J]. China Oncology, 2023, 33(5): 423-430. |
[10] | JIANG Jinling, ZHOU Chenfei, WANG Chao, ZHAO Liqin, WU Junwei, ZHANG Jun. Advanced progress in research and diagnosis of gastric cancer in 2022 [J]. China Oncology, 2023, 33(4): 303-314. |
[11] | ZHAO Haichao, GAO Qiang. Progress in research, diagnosis, and treatment of hepatocellular carcinoma in 2022 [J]. China Oncology, 2023, 33(4): 315-326. |
[12] | TIAN Xi, XU Wenhao, ZHU Shuxuan, AIHETAIMUJIANG•Anwaier, SU Jiaqi, YE Shiqi, QU Yuanyuan, SHI Guohai, ZHANG Hailiang, YE Dingwei. Advances in the research, diagnosis and treatment of renal cell carcinoma in 2022 [J]. China Oncology, 2023, 33(3): 191-200. |
[13] | ZHENG Shengfeng, ZHU Yiping, YE Dingwei. Advances in basic research, clinical diagnosis and treatment of bladder cancer in 2022 [J]. China Oncology, 2023, 33(3): 201-209. |
[14] | PAN Jian, ZHU Yao, DAI Bo, YE Dingwei. Advances in basic research, clinical diagnosis and treatment of prostate cancer in 2022 [J]. China Oncology, 2023, 33(3): 210-217. |
[15] | ZENG Cheng, ZHANG Jian. Leading research progress and prospect of antibody-drug conjugate in pancreatic cancer in 2022 [J]. China Oncology, 2023, 33(3): 235-240. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
沪ICP备12009617
Powered by Beijing Magtech Co. Ltd