China Oncology ›› 2023, Vol. 33 ›› Issue (1): 1-13.doi: 10.19401/j.cnki.1007-3639.2023.01.001
• Specialists' Commentary • Previous Articles Next Articles
WANG Xu(), CHENG He, LIU Chen, YU Xianjun(
)
Received:
2022-12-30
Revised:
2023-01-13
Online:
2023-01-30
Published:
2023-02-13
Contact:
YU Xianjun
Share article
CLC Number:
WANG Xu, CHENG He, LIU Chen, YU Xianjun. New progress in basic research, clinical diagnosis and treatment of pancreatic cancer in 2022[J]. China Oncology, 2023, 33(1): 1-13.
[1] |
SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249.
doi: 10.3322/caac.21660 |
[2] | WILD C P, WEIDERPASS E, STEWART B W. World cancer report: cancer research for cancer prevention[M]. Lyon: IARC Publications, 2020. |
[3] |
SIEGEL R L, MILLER K D, FUCHS H E, et al. Cancer statistics, 2022[J]. CA Cancer J Clin, 2022. 72(1): 7-33.
doi: 10.3322/caac.21708 |
[4] | XIA C F, DONG X S, LI H, et al. Cancer statistics in China and United States, 2022: profiles, trends, and determinants[J]. Chin Med J (Engl), 2022, 135(5): 584-590. |
[5] |
IRFAN A, FANG H A, AWAD S, et al. Does race affect the long-term survival benefit of systemic therapy in pancreatic adenocarcinoma?[J]. Am J Surg, 2022, 224(3): 955-958.
doi: 10.1016/j.amjsurg.2022.04.004 pmid: 35430088 |
[6] |
ARJANI S, SAINT-MAURICE P F, JULIÁN-SERRANO S, et al. Body mass index trajectories across the adult life course and pancreatic cancer risk[J]. JNCI Cancer Spectr, 2022, 6(6): pkac066.
doi: 10.1093/jncics/pkac066 |
[7] |
SHARMA S, TAPPER W J, COLLINS A, et al. Predicting pancreatic cancer in the UK biobank cohort using polygenic risk scores and diabetes mellitus[J]. Gastroenterology, 2022, 162(6): 1665-1674.e2.
doi: 10.1053/j.gastro.2022.01.016 |
[8] |
WANG L, SCOTT F I, BOURSI B, et al. Cost-effectiveness of a risk-tailored pancreatic cancer early detection strategy among patients with new-onset diabetes[J]. Clin Gastroenterol Hepatol, 2022, 20(9): 1997-2004.e7.
doi: 10.1016/j.cgh.2021.10.037 |
[9] |
JULIÁN-SERRANO S, REEDY J, ROBIEN K, et al. Adherence to 5 diet quality indices and pancreatic cancer risk in a large US prospective cohort[J]. Am J Epidemiol, 2022, 191(9): 1584-1600.
doi: 10.1093/aje/kwac082 |
[10] |
MUNIGALA S, SUBRAMANIAM D S, SUBRAMANIAM D P, et al. Incidence and risk of pancreatic cancer in patients with a new diagnosis of chronic pancreatitis[J]. Dig Dis Sci, 2022, 67(2): 708-715.
doi: 10.1007/s10620-021-06886-7 |
[11] | MUNIGALA S, ALMASKEEN S, SUBRAMANIAM D S, et al. Acute pancreatitis recurrences augment long-term pancreatic cancer risk[J]. Am J Gastroenterol, 2022. [Online ahead of print] |
[12] |
MAHAJAN U M, OEHRLE B, SIRTL S, et al. Independent validation and assay standardization of improved metabolic biomarker signature to differentiate pancreatic ductal adenocarcinoma from chronic pancreatitis[J]. Gastroenterology, 2022, 163(5): 1407-1422.
doi: 10.1053/j.gastro.2022.07.047 pmid: 35870514 |
[13] |
CHEN W S, CHEN Q L, PARKER R A, et al. Risk prediction of pancreatic cancer in patients with abnormal morphologic findings related to chronic pancreatitis: a machine learning approach[J]. Gastro Hep Adv, 2022, 1(6): 1014-1026.
doi: 10.1016/j.gastha.2022.06.008 |
[14] |
POLLINI T, ADSAY V, CAPURSO G, et al. The tumour immune microenvironment and microbiome of pancreatic intraductal papillary mucinous neoplasms[J]. Lancet Gastroenterol Hepatol, 2022, 7(12): 1141-1150.
doi: 10.1016/S2468-1253(22)00235-7 |
[15] |
HERNANDEZ S, PARRA E R, URAOKA N, et al. Diminished immune surveillance during histologic progression of intraductal papillary mucinous neoplasms offers a therapeutic opportunity for cancer interception[J]. Clin Cancer Res, 28(9): 1938-1947.
doi: 10.1158/1078-0432.CCR-21-2585 |
[16] | LIFFERS S T, GODFREY L, FROHN L, et al. Molecular heterogeneity and commonalities in pancreatic cancer precursors with gastric and intestinal phenotype[J]. Gut, 2022: gutjnl-gu2021-326550. |
[17] |
FELIX K, HONDA K, NAGASHIMA K, et al. Noninvasive risk stratification of intraductal papillary mucinous neoplasia with malignant potential by serum apolipoprotein-A2-isoforms[J]. Int J Cancer, 2022, 150(5): 881-894.
doi: 10.1002/ijc.33875 |
[18] |
YAMAGUCHI A, TAZUMA S, TAMARU Y, et al. Long-standing diabetes mellitus increases concomitant pancreatic cancer risk in patients with intraductal papillary mucinous neoplasms[J]. BMC Gastroenterol, 2022, 22(1): 529.
doi: 10.1186/s12876-022-02564-8 pmid: 36539713 |
[19] |
PEDUZZI G, ARCHIBUGI L, KATZKE V, et al. Common variability in oestrogen-related genes and pancreatic ductal adenocarcinoma risk in women[J]. Sci Rep, 2022, 12(1): 18100.
doi: 10.1038/s41598-022-22973-9 pmid: 36302831 |
[20] |
CAO L W, HUANG C, CUI ZHOU D, et al. Proteogenomic characterization of pancreatic ductal adenocarcinoma[J]. Cell, 2021, 184(19): 5031-5052.e26.
doi: 10.1016/j.cell.2021.08.023 pmid: 34534465 |
[21] |
LEIDNER R, SANJUAN SILVA N, HUANG H Y, et al. Neoantigen T-cell receptor gene therapy in pancreatic cancer[J]. N Engl J Med, 2022, 386(22): 2112-2119.
doi: 10.1056/NEJMoa2119662 |
[22] |
ASTIAZARAN-SYMONDS E, KIM J, HALEY J S, et al. A genome-first approach to estimate prevalence of germline pathogenic variants and risk of pancreatic cancer in select cancer susceptibility genes[J]. Cancers, 2022, 14(13): 3257.
doi: 10.3390/cancers14133257 |
[23] |
GARDINER A, KIDD J, ELIAS M C, et al. Pancreatic ductal carcinoma risk associated with hereditary cancer-risk genes[J]. J Natl Cancer Inst, 2022, 114(7): 996-1002.
doi: 10.1093/jnci/djac069 |
[24] | GIACCHERINI M, FARINELLA R, GENTILUOMO M, et al. Association between a polymorphic variant in the CDKN2B-AS1/ANRIL gene and pancreatic cancer risk[J]. Int J Cancer, 2022. [Online ahead of print] |
[25] | SARDARZADEH N, KHOJASTEH-LEYLAKOOHI F, DAMAVANDI S, et al. Association of a genetic variant in the cyclin-dependent kinase inhibitor 2B with risk of pancreatic cancer[J]. Rep Biochem Mol Biol, 2022, 11(2): 336-343. |
[26] |
GIACCHERINI M, GENTILUOMO M, ARCIDIACONO P G, et al. A polymorphic variant in telomere maintenance is associated with worrisome features and high-risk stigmata development in IPMNs[J]. Carcinogenesis, 2022, 43(8): 728-735.
doi: 10.1093/carcin/bgac051 pmid: 35675759 |
[27] |
RAMAKRISHNAN G, PARAJULI P, SINGH P, et al. NF1 loss of function as an alternative initiating event in pancreatic ductal adenocarcinoma[J]. Cell Rep, 2022, 41(6): 111623.
doi: 10.1016/j.celrep.2022.111623 |
[28] |
TIAN J B, CHEN C, RAO M L, et al. Aberrant RNA splicing is a primary link between genetic variation and pancreatic cancer risk[J]. Cancer Res, 2022, 82(11): 2084-2096.
doi: 10.1158/0008-5472.CAN-21-4367 pmid: 35363263 |
[29] |
OZTURK H, CINGOZ H, TUFAN T R, et al. ISL2 is a putative tumor suppressor whose epigenetic silencing reprograms the metabolism of pancreatic cancer[J]. Dev Cell, 2022, 57(11): 1331-1346.e9.
doi: 10.1016/j.devcel.2022.04.014 pmid: 35508175 |
[30] |
HUANG H, PAN R N, ZHAO Y, et al. L3MBTL2-mediated CGA transcriptional suppression promotes pancreatic cancer progression through modulating autophagy[J]. iScience, 2022, 25(5): 104249.
doi: 10.1016/j.isci.2022.104249 |
[31] | NI Q Z, ZHU B, JI Y, et al. PPDPF promotes the development of mutant KRAS-driven pancreatic ductal adenocarcinoma by regulating the GEF activity of SOS1[J]. Adv Sci (Weinh), 2022: e2202448. |
[32] | DE ANDRÉS M P, JACKSON R J, FELIPE I, et al. GATA4 and GATA6 loss-of-expression is associated with extinction of the classical programme and poor outcome in pancreatic ductal adenocarcinoma[J]. Gut, 2022: gutjnl-gu2021-325803. |
[33] |
HE D, FENG H J, SUNDBERG B, et al. Methionine oxidation activates pyruvate kinase M2 to promote pancreatic cancer metastasis[J]. Mol Cell, 2022, 82(16): 3045-3060.e11.
doi: 10.1016/j.molcel.2022.06.005 pmid: 35752173 |
[34] | DOFFO J, BAMOPOULOS S A, KÖSE H, et al. NOXA expression drives synthetic lethality to RUNX1 inhibition in pancreatic cancer[J]. Proc Natl Acad Sci U S A, 2022, 119(9): e2105691119. |
[35] | CHENG R J, LI F Y, ZHANG M L, et al. A novel protein RASON encoded by a lncRNA controls oncogenic RAS signaling in KRAS mutant cancers[J]. Cell Res, 2022. [Online ahead of print] |
[36] |
MARUI S, NISHIKAWA Y, SHIOKAWA M, et al. Context-dependent roles of Hes1 in the adult pancreas and pancreatic tumor formation[J]. Gastroenterology, 2022, 163(6): 1613-1629.e12.
doi: 10.1053/j.gastro.2022.08.048 |
[37] |
FAN X Y, LU P, WANG H W, et al. Integrated single-cell multiomics analysis reveals novel candidate markers for prognosis in human pancreatic ductal adenocarcinoma[J]. Cell Discov, 2022, 8(1): 13.
doi: 10.1038/s41421-021-00366-y pmid: 35165277 |
[38] |
SHI X H, LI Y G, YUAN Q Y, et al. Integrated profiling of human pancreatic cancer organoids reveals chromatin accessibility features associated with drug sensitivity[J]. Nat Commun, 2022, 13(1): 2169.
doi: 10.1038/s41467-022-29857-6 pmid: 35449156 |
[39] |
ZHU Q, ZHOU H, WU L M, et al. O-GlcNAcylation promotes pancreatic tumor growth by regulating malate dehydrogenase 1[J]. Nat Chem Biol, 2022, 18(10): 1087-1095.
doi: 10.1038/s41589-022-01085-5 pmid: 35879546 |
[40] |
LIU Y, DEGUCHI Y, WEI D Y, et al. Rapid acceleration of KRAS-mutant pancreatic carcinogenesis via remodeling of tumor immune microenvironment by PPARδ[J]. Nat Commun, 2022, 13(1): 2665.
doi: 10.1038/s41467-022-30392-7 |
[41] |
KONG W J, LIU Z S, SUN M N, et al. Synergistic autophagy blockade and VDR signaling activation enhance stellate cell reprogramming in pancreatic ductal adenocarcinoma[J]. Cancer Lett, 2022, 539: 215718.
doi: 10.1016/j.canlet.2022.215718 |
[42] |
GRECO B, MALACARNE V, DE GIRARDI F, et al. Disrupting N-glycan expression on tumor cells boosts chimeric antigen receptor T cell efficacy against solid malignancies[J]. Sci Transl Med, 2022, 14(628): eabg3072.
doi: 10.1126/scitranslmed.abg3072 |
[43] | WANG Z K, MORESCO P, YAN R, et al. Carcinomas assemble a filamentous CXCL12-keratin-19 coating that suppresses T cell-mediated immune attack[J]. Proc Natl Acad Sci USA, 2022, 119(4): e2119463119. |
[44] |
MI H Y, SIVAGNANAM S, BETTS C B, et al. Quantitative spatial profiling of immune populations in pancreatic ductal adenocarcinoma reveals tumor microenvironment heterogeneity and prognostic biomarkers[J]. Cancer Res, 2022, 82(23): 4359-4372.
doi: 10.1158/0008-5472.CAN-22-1190 |
[45] |
ZHOU D C, JAYASINGHE R G, CHEN S Q, et al. Spatially restricted drivers and transitional cell populations cooperate with the microenvironment in untreated and chemo-resistant pancreatic cancer[J]. Nat Genet, 2022, 54(9): 1390-1405.
doi: 10.1038/s41588-022-01157-1 pmid: 35995947 |
[46] |
HUANG H C, WANG Z N, ZHANG Y Q, et al. Mesothelial cell-derived antigen-presenting cancer-associated fibroblasts induce expansion of regulatory T cells in pancreatic cancer[J]. Cancer Cell, 2022, 40(6): 656-673.e7.
doi: 10.1016/j.ccell.2022.04.011 |
[47] |
KARTAL E, SCHMIDT T S B, MOLINA-MONTES E, et al. A faecal microbiota signature with high specificity for pancreatic cancer[J]. Gut, 2022, 71(7): 1359-1372.
doi: 10.1136/gutjnl-2021-324755 pmid: 35260444 |
[48] |
NAGATA N, NISHIJIMA S, KOJIMA Y, et al. Metagenomic identification of microbial signatures predicting pancreatic cancer from a multinational study[J]. Gastroenterology, 2022, 163(1): 222-238.
doi: 10.1053/j.gastro.2022.03.054 pmid: 35398347 |
[49] |
GHADDAR B, BISWAS A, HARRIS C, et al. Tumor microbiome links cellular programs and immunity in pancreatic cancer[J]. Cancer Cell, 2022, 40(10): 1240-1253.e5.
doi: 10.1016/j.ccell.2022.09.009 pmid: 36220074 |
[50] |
SU H, YANG F, FU R, et al. Collagenolysis-dependent DDR1 signalling dictates pancreatic cancer outcome[J]. Nature, 2022, 610(7931): 366-372.
doi: 10.1038/s41586-022-05169-z |
[51] |
HALBROOK C J, THURSTON G, BOYER S, et al. Differential integrated stress response and asparagine production drive symbiosis and therapy resistance of pancreatic adenocarcinoma cells[J]. Nat Cancer, 2022, 3(11): 1386-1403.
doi: 10.1038/s43018-022-00463-1 |
[52] | GUBBALA V B, JYTOSANA N, TRINH V Q, et al. Eicosanoids in the pancreatic tumor microenvironment-a multicellular, multifaceted progression[J]. Gastro Hep Adv, 2022, 1(4): 682-697. |
[53] |
KIM P K, HALBROOK C J, KERK S A, et al. Hyaluronic acid fuels pancreatic cancer cell growth[J]. Elife, 2021, 10: e62645.
doi: 10.7554/eLife.62645 |
[54] | BAI J R, LIU T, TU B, et al. Autophagy loss impedes cancer-associated fibroblast activation via downregulating proline biosynthesis[J]. Autophagy, 2022: 1-12. |
[55] |
FALCOMATÀ C, BÄRTHEL S, WIDHOLZ S A, et al. Selective multi-kinase inhibition sensitizes mesenchymal pancreatic cancer to immune checkpoint blockade by remodeling the tumor microenvironment[J]. Nat Cancer, 2022, 3(3): 318-336.
doi: 10.1038/s43018-021-00326-1 |
[56] |
GU J Y, HUANG W J, WANG X X, et al. Hsa-miR-3178/RhoB/PI3K/Akt, a novel signaling pathway regulates ABC transporters to reverse gemCitabine resistance in pancreatic cancer[J]. Mol Cancer, 2022, 21(1): 112.
doi: 10.1186/s12943-022-01587-9 pmid: 35538494 |
[57] |
LIU J J, JING W H, WANG T Y, et al. Functional metabolomics revealed the dual-activation of cAMP-AMP axis is a novel therapeutic target of pancreatic cancer[J]. Pharmacol Res, 2022, 187: 106554.
doi: 10.1016/j.phrs.2022.106554 |
[58] |
ZENG X Y, ZHAO F, CUI G F, et al. METTL16 antagonizes MRE11-mediated DNA end resection and confers synthetic lethality to PARP inhibition in pancreatic ductal adenocarcinoma[J]. Nat Cancer, 2022, 3(9): 1088-1104.
doi: 10.1038/s43018-022-00429-3 |
[59] |
VAZIRI-GOHAR A, CASSEL J, MOHAMMED F S, et al. Limited nutrient availability in the tumor microenvironment renders pancreatic tumors sensitive to allosteric IDH1 inhibitors[J]. Nat Cancer, 2022, 3(7): 852-865.
doi: 10.1038/s43018-022-00393-y |
[60] |
WANG P Y, ZHANG T, WANG X J, et al. Aberrant human ClpP activation disturbs mitochondrial proteome homeostasis to suppress pancreatic ductal adenocarcinoma[J]. Cell Chem Biol, 2022, 29(9): 1396-1408.e8.
doi: 10.1016/j.chembiol.2022.07.002 |
[61] |
LI J H, LAMA R, GALSTER S L, et al. Small-molecule MMRi62 induces ferroptosis and inhibits metastasis in pancreatic cancer via degradation of ferritin heavy chain and mutant p53[J]. Mol Cancer Ther, 2022, 21(4): 535-545.
doi: 10.1158/1535-7163.MCT-21-0728 |
[62] |
WENG N N, QIN S Y, LIU J Y, et al. Repurposing econazole as a pharmacological autophagy inhibitor to treat pancreatic ductal adenocarcinoma[J]. Acta Pharm Sin B, 2022, 12(7): 3085-3102.
doi: 10.1016/j.apsb.2022.01.018 pmid: 35865101 |
[63] |
DA SILVA L, JIANG J M, PERKINS C, et al. Pharmacological inhibition and reversal of pancreatic acinar ductal metaplasia[J]. Cell Death Discov, 2022, 8(1): 378.
doi: 10.1038/s41420-022-01165-4 pmid: 36055991 |
[64] |
LAN L X, EVAN T, LI H F, et al. GREM1 is required to maintain cellular heterogeneity in pancreatic cancer[J]. Nature, 2022, 607(7917): 163-168.
doi: 10.1038/s41586-022-04888-7 |
[65] |
YUAN F, SUN M N, LIU Z S, et al. Macropinocytic dextran facilitates KRAS-targeted delivery while reducing drug-induced tumor immunity depletion in pancreatic cancer[J]. Theranostics, 2022, 12(3): 1061-1073.
doi: 10.7150/thno.65299 pmid: 35154474 |
[66] | CHEN Q J, WANG Q B, WANG Y, et al. Penetrating micelle for reversing immunosuppression and drug resistance in pancreatic cancer treatment[J]. Small, 2022, 18(18): e2107712. |
[67] |
TIBILETTI M G, CARNEVALI I, PENSOTTI V, et al. OncoPan®: an NGS-based screening methodology to identify molecular markers for therapy and risk assessment in pancreatic ductal adenocarcinoma[J]. Biomedicines, 2022, 10(5): 1208.
doi: 10.3390/biomedicines10051208 |
[68] |
KHAN S, LUCK H, WINER S, et al. Emerging concepts in intestinal immune control of obesity-related metabolic disease[J]. Nat Commun, 2021, 12(1): 2598.
doi: 10.1038/s41467-021-22727-7 pmid: 33972511 |
[69] |
PREVENTIVE SERVICES TASK FORCE U S, OWENS D K, DAVIDSON K W, et al. Screening for pancreatic cancer: US preventive services task force reaffirmation recommendation statement[J]. JAMA, 2019, 322(5): 438-444.
doi: 10.1001/jama.2019.10232 pmid: 31386141 |
[70] |
GOGGINS M, OVERBEEK K A, BRAND R, et al. Management of patients with increased risk for familial pancreatic cancer: updated recommendations from the International Cancer of the Pancreas Screening (CAPS) Consortium[J]. Gut, 2020, 69(1): 7-17.
doi: 10.1136/gutjnl-2019-319352 pmid: 31672839 |
[71] |
HUANG C C, SIMEONE D M, LUK L, et al. Standardization of MRI screening and reporting in individuals with elevated risk of pancreatic ductal adenocarcinoma: consensus statement of the PRECEDE consortium[J]. AJR Am J Roentgenol, 2022, 219(6): 903-914.
doi: 10.2214/AJR.22.27859 |
[72] |
OVERBEEK K A, LEVINK I J M, KOOPMANN B D M, et al. Long-term yield of pancreatic cancer surveillance in high-risk individuals[J]. Gut, 2022, 71(6): 1152-1160.
doi: 10.1136/gutjnl-2020-323611 |
[73] |
QURESHI T A, JAVED S, SARMADI T, et al. Artificial intelligence and imaging for risk prediction of pancreatic cancer: a narrative review[J]. Chin Clin Oncol, 2022, 11(1): 1.
doi: 10.21037/cco-21-117 pmid: 35144387 |
[74] |
JAVED S, QURESHI T A, GADDAM S, et al. Risk prediction of pancreatic cancer using AI analysis of pancreatic subregions in computed tomography images[J]. Front Oncol, 2022, 12: 1007990.
doi: 10.3389/fonc.2022.1007990 |
[75] |
AHMAD QURESHI T, GADDAM S, WACHSMAN A M, et al. Predicting pancreatic ductal adenocarcinoma using artificial intelligence analysis of pre-diagnostic computed tomography images[J]. Cancer Biomark, 2022, 33(2): 211-217.
doi: 10.3233/CBM-210273 pmid: 35213359 |
[76] |
LEVINK I J M, KLATTE D C F, HANNA-SAWIRES R G, et al. Longitudinal changes of serum protein N-glycan levels for earlier detection of pancreatic cancer in high-risk individuals[J]. Pancreatology, 2022, 22(4): 497-506.
doi: 10.1016/j.pan.2022.03.021 |
[77] |
DA PAIXÃO V F, SOSA O J, DA SILVA PELLEGRINA D V, et al. Annotation and functional characterization of long noncoding RNAs deregulated in pancreatic adenocarcinoma[J]. Cell Oncol, 2022, 45(3): 479-504.
doi: 10.1007/s13402-022-00678-5 |
[78] |
KANDIMALLA R, SHIMURA T, MALLIK S, et al. Identification of serum miRNA signature and establishment of a nomogram for risk stratification in patients with pancreatic ductal adenocarcinoma[J]. Ann Surg, 2022, 275(1): e229-e237.
doi: 10.1097/SLA.0000000000003945 |
[79] |
KONNO M, KOSEKI J, ASAI A, et al. Distinct methylation levels of mature microRNAs in gastrointestinal cancers[J]. Nat Commun, 2019, 10(1): 3888.
doi: 10.1038/s41467-019-11826-1 pmid: 31467274 |
[80] |
COUTO N, ELZANOWSKA J, MAIA J, et al. IgG + extracellular vesicles measure therapeutic response in advanced pancreatic cancer[J]. Cells, 2022, 11(18): 2800.
doi: 10.3390/cells11182800 |
[81] |
BHANDARE M S, PARRAY A, CHAUDHARI V A, et al. Minimally invasive surgery for pancreatic cancer-are we there yet? A narrative review[J]. Chin Clin Oncol, 2022, 11(1): 3.
doi: 10.21037/cco-21-131 |
[82] |
TOPAL H, AERTS R, LAENEN A, et al. Survival after minimally invasive vs open surgery for pancreatic adenocarcinoma[J]. JAMA Netw Open, 2022, 5(12): e2248147.
doi: 10.1001/jamanetworkopen.2022.48147 |
[83] |
SUTTON T L, POTTER K C, MAYO S C, et al. Complications in distal pancreatectomy versus radical antegrade modular pancreatosplenectomy: a disease risk score analysis utilizing national surgical quality improvement project data[J]. World J Surg, 2022, 46(7): 1768-1775.
doi: 10.1007/s00268-022-06545-6 pmid: 35403874 |
[84] | LI B, GUO S W, YIN X Y, et al. Risk factors of positive resection margin differ in pancreaticoduodenectomy and distal pancreatosplenectomy for pancreatic ductal adenocarcinoma undergoing upfront surgery[J]. Asian J Surg, 2022: S1015-S9584(22)01438-5. |
[85] | HACKERT T, KLAIBER U, HINZ U, et al. Portal vein resection in pancreatic cancer surgery: risk of thrombosis and radicality determine survival[J]. Ann Surg, 2022. [Online ahead of print] |
[86] | ZHOU Y P, WANG J T, ZHANG S L, et al. A CT radiomics-based risk score for preoperative estimation of intraoperative superior mesenteric-portal vein involvement in pancreatic ductal adenocarcinoma[J]. Ann Surg Oncol, 2022. [Online ahead of print] |
[87] |
SAHLSTRÖM E, BEREZA-CARLSON P, NILSSON J, et al. Risk factors and outcomes for patients with pancreatic cancer undergoing surgical exploration without resection due to metastatic disease: a national cohort study[J]. Hepatobiliary Pancreat Dis Int, 2022, 21(3): 279-284.
doi: 10.1016/j.hbpd.2022.02.003 |
[88] |
ZAMBIRINIS C P, MIDYA A, CHAKRABORTY J, et al. Recurrence after resection of pancreatic cancer: can radiomics predict patients at greatest risk of liver metastasis?[J]. Ann Surg Oncol, 2022, 29(8): 4962-4974.
doi: 10.1245/s10434-022-11579-0 pmid: 35366706 |
[89] |
ASAKURA Y, TOYAMA H, ISHIDA J, et al. Clinicopathological variables and risk factors for lung recurrence after resection of pancreatic ductal adenocarcinoma[J]. Asian J Surg, 2023, 46(1): 207-212.
doi: 10.1016/j.asjsur.2022.03.043 |
[90] |
PADRÓN L J, MAURER D M, O'HARA M H, et al. Sotigalimab and/or nivolumab with chemotherapy in first-line metastatic pancreatic cancer: clinical and immunologic analyses from the randomized phase 2 PRINCE trial[J]. Nat Med, 2022, 28(6): 1167-1177.
doi: 10.1038/s41591-022-01829-9 pmid: 35662283 |
[91] |
VERSTEIJNE E, VAN DAM J L, SUKER M, et al. Neoadjuvant chemoradiotherapy versus upfront surgery for resectable and borderline resectable pancreatic cancer: long-term results of the Dutch randomized PREOPANC trial[J]. J Clin Oncol, 2022, 40(11): 1220-1230.
doi: 10.1200/JCO.21.02233 |
[92] |
YAMAGUCHI J, YOKOYAMA Y, FUJⅡ T, et al. Results of a phase Ⅱ study on the use of neoadjuvant chemotherapy (FOLFIRINOX or GEM/nab-PTX) for borderline-resectable pancreatic cancer (NUPAT-01)[J]. Ann Surg, 2022, 275(6): 1043-1049.
doi: 10.1097/SLA.0000000000005430 |
[93] |
CANON J, REX K, SAIKI A Y, et al. The clinical KRAS (G12C) inhibitor AMG 510 drives anti-tumour immunity[J]. Nature, 2019, 575(7781): 217-223.
doi: 10.1038/s41586-019-1694-1 |
[94] |
FELL J B, FISCHER J P, BAER B R, et al. Identification of the clinical development candidate MRTX849, a covalent KRASG12C inhibitor for the treatment of cancer[J]. J Med Chem, 2020, 63(13): 6679-6693.
doi: 10.1021/acs.jmedchem.9b02052 |
[95] |
KWAN A K, PIAZZA G A, KEETON A B, et al. The path to the clinic: a comprehensive review on direct KRASG12C inhibitors[J]. J Exp Clin Cancer Res, 2022, 41(1): 27.
doi: 10.1186/s13046-021-02225-w |
[96] | KEMP S B, CHENG N, MARKOSYAN N, et al. Efficacy of a small molecule inhibitor of KrasG12D in immunocompetent models of pancreatic cancer[J]. Cancer Discov, 2022: CD-22-1066. |
[97] |
MOKHTECH M, MICCIO J A, JOHUNG K, et al. Multiagent chemotherapy followed by stereotactic body radiotherapy versus conventional radiotherapy for resected pancreas cancer[J]. Am J Clin Oncol, 2022, 45(11): 450-457.
doi: 10.1097/COC.0000000000000947 |
[98] |
NAFFOUJE S A, SABESAN A, KIM D W, et al. Adjuvant chemoradiotherapy in resected pancreatic ductal adenocarcinoma: where does the benefit lie? A nomogram for risk stratification and patient selection[J]. J Gastrointest Surg, 2022, 26(2): 376-386.
doi: 10.1007/s11605-021-05130-x |
[99] |
RUTENBERG M S, NICHOLS R C. Proton beam radiotherapy for pancreas cancer[J]. J Gastrointest Oncol, 2020, 11(1): 166-175.
doi: 10.21037/jgo.2019.03.02 pmid: 32175120 |
[100] |
KOBEISSI J M, SIMONE C B 2nd, LIN H B, et al. Proton therapy in the management of pancreatic cancer[J]. Cancers, 2022, 14(11): 2789.
doi: 10.3390/cancers14112789 |
[101] |
NAUMANN M, CZEMPIEL T, LÖßNER A J, et al. Combined systemic drug treatment with proton therapy: investigations on patient-derived organoids[J]. Cancers, 2022, 14(15): 3781.
doi: 10.3390/cancers14153781 |
[102] |
SELVANESAN B C, CHANDRA D, QUISPE-TINTAYA W, et al. Listeria delivers tetanus toxoid protein to pancreatic tumors and induces cancer cell death in mice[J]. Sci Transl Med, 2022, 14(637): eabc1600.
doi: 10.1126/scitranslmed.abc1600 |
[103] | MARIN I, BOIX O, GARCIA-GARIJO A, et al. Cellular senescence is immunogenic and promotes anti-tumor immunity[J]. Cancer Discov, 2022: CD-22-0523. |
[104] |
HEWITT D B, NISSEN N, HATOUM H, et al. A phase 3 randomized clinical trial of chemotherapy with or without algenpantucel-L (HyperAcute-pancreas) immunotherapy in subjects with borderline resectable or locally advanced unresectable pancreatic cancer[J]. Ann Surg, 2022, 275(1): 45-53.
doi: 10.1097/SLA.0000000000004669 |
[105] | ZHANG Z W, LIU X D, ZHOU L R, et al. Investigation of clinical application of claudin 18 isoform 2 in pancreatic ductal adenocarcinoma: a retrospective analysis of 302 Chinese patients[J]. Histol Histopathol, 2022, 37(10): 1031-1040. |
[106] |
MELIEF C J M. T-cell immunotherapy against mutant KRAS for pancreatic cancer[J]. N Engl J Med, 2022, 386(22): 2143-2144.
doi: 10.1056/NEJMe2204283 |
[1] | HAO Xian, HUANG Jianjun, YANG Wenxiu, LIU Jinting, ZHANG Junhong, LUO Yubei, LI Qing, WANG Dahong, GAO Yuwei, TAN Fuyun, BO Li, ZHENG Yu, WANG Rong, FENG Jianglong, LI Jing, ZHAO Chunhua, DOU Xiaowei. Establishment of primary breast cancer cell line as new model for drug screening and basic research [J]. China Oncology, 2024, 34(6): 561-570. |
[2] | CHEN Hong, CAO Zhiyun. Recent progress in the construction and application of patient-derived pancreatic cancer organoid models [J]. China Oncology, 2024, 34(6): 590-597. |
[3] | ZHANG Qi, XIU Bingqiu, WU Jiong. Progress of important clinical research of breast cancer in China in 2023 [J]. China Oncology, 2024, 34(2): 135-142. |
[4] | WANG Zhaobu, LI Xing, YU Xinmiao, JIN Feng. Important research progress in clinical practice for early breast cancer in 2023 [J]. China Oncology, 2024, 34(2): 151-160. |
[5] | TAN Xiaolang, YAO Sha, WANG Guihua, PENG Luogen. Research on uPAR promoting proliferation, migration, and chemoresistance of pancreatic cancer by inhibiting autophagy via MAPK signaling [J]. China Oncology, 2024, 34(10): 944-956. |
[6] | LI Tianjiao, YE Longyun, JIN Kaizhou, WU Weiding, YU Xianjun. Advances in basic research, clinical diagnosis and treatment of pancreatic cancer in 2023 [J]. China Oncology, 2024, 34(1): 1-12. |
[7] | QU Ning, WANG Yuting, MA Ben, WANG Yu. Advances in basic research, clinical diagnosis and treatment of thyroid cancer in 2022 [J]. China Oncology, 2023, 33(5): 423-430. |
[8] | JIANG Jinling, ZHOU Chenfei, WANG Chao, ZHAO Liqin, WU Junwei, ZHANG Jun. Advanced progress in research and diagnosis of gastric cancer in 2022 [J]. China Oncology, 2023, 33(4): 303-314. |
[9] | ZHAO Haichao, GAO Qiang. Progress in research, diagnosis, and treatment of hepatocellular carcinoma in 2022 [J]. China Oncology, 2023, 33(4): 315-326. |
[10] | TIAN Xi, XU Wenhao, ZHU Shuxuan, AIHETAIMUJIANG•Anwaier, SU Jiaqi, YE Shiqi, QU Yuanyuan, SHI Guohai, ZHANG Hailiang, YE Dingwei. Advances in the research, diagnosis and treatment of renal cell carcinoma in 2022 [J]. China Oncology, 2023, 33(3): 191-200. |
[11] | ZHENG Shengfeng, ZHU Yiping, YE Dingwei. Advances in basic research, clinical diagnosis and treatment of bladder cancer in 2022 [J]. China Oncology, 2023, 33(3): 201-209. |
[12] | PAN Jian, ZHU Yao, DAI Bo, YE Dingwei. Advances in basic research, clinical diagnosis and treatment of prostate cancer in 2022 [J]. China Oncology, 2023, 33(3): 210-217. |
[13] | ZENG Cheng, ZHANG Jian. Leading research progress and prospect of antibody-drug conjugate in pancreatic cancer in 2022 [J]. China Oncology, 2023, 33(3): 235-240. |
[14] | FU Qingsheng, JIN Lei, ZHANG Xudong, XU Yingchen, ZHU Chunfu, QIN Xihu, WU Baoqiang. Effect of tRF-Pro-CGG on the biological behavior of mouse pancreatic cancer cells and its molecular mechanism [J]. China Oncology, 2023, 33(3): 241-249. |
[15] | YUE Ming, WANG Liwei, CUI Jiujie. Research progress on the mechanism of organ-specific lung metastasis in pancreatic cancer [J]. China Oncology, 2023, 33(11): 1026-1031. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
沪ICP备12009617
Powered by Beijing Magtech Co. Ltd