China Oncology ›› 2022, Vol. 32 ›› Issue (10): 960-970.doi: 10.19401/j.cnki.1007-3639.2022.10.004
• Specialists' Commentary • Previous Articles Next Articles
LUO Guopei1,2,3,4(), YU Xianjun1,2,3,4(
)
Received:
2022-06-29
Revised:
2022-10-18
Online:
2022-10-30
Published:
2022-11-29
Share article
CLC Number:
LUO Guopei, YU Xianjun. Precision therapy in pancreatic cancer: from streamlet towards mainstream[J]. China Oncology, 2022, 32(10): 960-970.
Tab. 1
Summary of common therapeutic targets for pancreatic cancer"
Pathway or molecule | Related genes or indicators | Frequency |
---|---|---|
KRAS | KRAS wild type, KRAS G12C mutation | 10% |
Homologous recombination repair | BRCA1/2, PALB2, ATM/ATR/ATRX, CHEK2, CDK12, RAD51, NBN, BLM, FANC, RAD51/51C,RAD50,BAP1,BARD1, BRIP1, MRE11 | >10% |
Fusion gene | NTRK, NRG1, ALK, RAF, RET, MET, FGFR2/3, ROS | 5% |
Genome stability | MSI-H, TMB, MMR-D (MLH1, MLH3, MSH2, MSH3, MSH6, PMS1, PMS2, POLE, EPCAM) | 1% |
Others | BRAF, HER2 | 1% |
[1] |
HAYASHI A, HONG J, IACOBUZIO-DONAHUE C A. The pancreatic cancer genome revisited[J]. Nat Rev Gastroenterol Hepatol, 2021, 18(7): 469-481.
doi: 10.1038/s41575-021-00463-z pmid: 34089011 |
[2] |
朱鑫哲, 李浩, 徐华祥, 等. 2021年胰腺癌研究及诊疗新进展[J]. 中国癌症杂志, 2022, 32(1): 1-12.
doi: 10.19401/j.cnki.1007-3639.2022.01.001 |
ZHU X Z, LI H, XU H X, et al. Advances in basic research, clinical diagnosis and treatment of pancreatic cancer in 2021[J]. China Oncol, 2022, 32(1): 1-12. | |
[3] |
QIAN Y Z, GONG Y T, FAN Z Y, et al. Molecular alterations and targeted therapy in pancreatic ductal adenocarcinoma[J]. J Hematol Oncol, 2020, 13(1): 130.
doi: 10.1186/s13045-020-00958-3 |
[4] | 雷洋洋, 王小林. “精准医学”模式下胰腺癌防治的探索与进展[J]. 复旦学报(医学版), 2021, 48(2): 255-260. |
LEI Y Y, WANG X L. Exploration and progress in prevention and treatment of pancreatic cancer under the “precision medicine” model[J]. Fudan Univ J Med Sci, 2021, 48(2): 255-260. | |
[5] |
GOLAN T, HAMMEL P, RENI M, et al. Maintenance olaparib for germline BRCA-mutated metastatic pancreatic cancer[J]. N Engl J Med, 2019, 381(4): 317-327.
doi: 10.1056/NEJMoa1903387 |
[6] |
PISHVAIAN M J, BLAIS E M, BRODY J R, et al. Overall survival in patients with pancreatic cancer receiving matched therapies following molecular profiling: a retrospective analysis of the Know Your Tumor registry trial[J]. Lancet Oncol, 2020, 21(4): 508-518.
doi: S1470-2045(20)30074-7 pmid: 32135080 |
[7] |
PISHVAIAN M J, BENDER R J, HALVERSON D, et al. Molecular profiling of patients with pancreatic cancer: initial results from the Know Your Tumor initiative[J]. Clin Cancer Res, 2018, 24 (20): 5018-5027.
doi: 10.1158/1078-0432.CCR-18-0531 pmid: 29954777 |
[8] |
KLEEFF J, MICHALSKI C W. Precision oncology for pancreatic cancer in real-world settings[J]. Lancet Oncol, 2020, 21(4): 469-471.
doi: S1470-2045(20)30148-0 pmid: 32135081 |
[9] |
AUNG K L, FISCHER S E, DENROCHE R E, et al. Genomics-driven precision medicine for advanced pancreatic cancer: early results from the COMPASS trial[J]. Clin Cancer Res, 2018, 24(6): 1344-1354.
doi: 10.1158/1078-0432.CCR-17-2994 pmid: 29288237 |
[10] |
CHANTRILL L A, NAGRIAL A M, WATSON C, et al. Precision medicine for advanced pancreas cancer: the individualized molecular pancreatic cancer therapy (IMPaCT) trial[J]. Clin Cancer Res, 2015, 21 (9): 2029-2037.
doi: 10.1158/1078-0432.CCR-15-0426 pmid: 25896973 |
[11] |
LOWERY M A, JORDAN E J, BASTURK O, et al. Real-time genomic profiling of pancreatic ductal adenocarcinoma: potential actionability and correlation with clinical phenotype[J]. Clin Cancer Res, 2017, 23 (20): 6094-6100.
doi: 10.1158/1078-0432.CCR-17-0899 pmid: 28754816 |
[12] |
DING D, JAVED A A, CUNNINGHAM D, et al. Challenges of the current precision medicine approach for pancreatic cancer: a single institution experience between 2013 and 2017[J]. Cancer Lett, 2021, 497: 221-228.
doi: 10.1016/j.canlet.2020.10.039 pmid: 33127389 |
[13] | NCCN Guidelines Version 1. 2022.Pancreatic Adenocarcinoma. |
[14] |
SCHULTHEIS B, REUTER D, EBERT M P, et al. Gemcitabine combined with the monoclonal antibody nimotuzumab is an active first-line regimen in KRAS wildtype patients with locally advanced or metastatic pancreatic cancer: a multicenter, randomized phase Ⅱb study[J]. Ann Oncol, 2017, 28(10): 2429-2435.
doi: 10.1093/annonc/mdx343 |
[15] | QIN S K, BAI Y X, WANG Z S, et al. Nimotuzumab combined with gemcitabine versus gemcitabine in KRAS wild-type locally advanced or metastatic pancreatic cancer: a prospective, randomized-controlled, double-blinded, multicenter, and phase Ⅲ clinical trial[C]. 2022 ASCO Annual Meeting. Abstract LBA4011. |
[16] | FUSCO M J, SAEED-VAFA D, CARBALLIDO E M, et al. Identification of targetable gene fusions and structural rearrangements to foster precision medicine in KRAS wild-type pancreatic cancer[J]. JCO Precis Oncol, 2021, 5: PO.20.00265. |
[17] |
CANON J, REX K, SAIKI A Y, et al. The clinical KRAS (G12C) inhibitor AMG 510 drives anti-tumour immunity[J]. Nature, 2019, 575(7781): 217-223.
doi: 10.1038/s41586-019-1694-1 |
[18] |
SKOULIDIS F, LI B T, DY G K, et al. Sotorasib for lung cancers with KRAS p.G12C mutation[J]. N Engl J Med, 2021, 384(25): 2371-2381.
doi: 10.1056/NEJMoa2103695 |
[19] |
LEIDNER R, SANJUAN SILVA N, HUANG H Y, et al. Neoantigen T-cell receptor gene therapy in pancreatic cancer[J]. N Engl J Med, 2022, 386(22): 2112-2119.
doi: 10.1056/NEJMoa2119662 |
[20] |
MELIEF C J M. T-cell immunotherapy against mutant KRAS for pancreatic cancer[J]. N Engl J Med, 2022, 386(22): 2143-2144.
doi: 10.1056/NEJMe2204283 |
[21] |
CAO L W, HUANG C, CUI ZHOU D, et al. Proteogenomic characterization of pancreatic ductal adenocarcinoma[J]. Cell, 2021, 184(19): 5031-5052.e26.
doi: 10.1016/j.cell.2021.08.023 pmid: 34534465 |
[22] |
ESER S, REIFF N, MESSER M, et al. Selective requirement of PI3K/PDK1 signaling for Kras oncogene-driven pancreatic cell plasticity and cancer[J]. Cancer Cell, 2013, 23(3): 406-420.
doi: 10.1016/j.ccr.2013.01.023 |
[23] |
KO A H, BEKAII-SAAB T, VAN ZIFFLE J, et al. A multicenter, open-label phase Ⅱ clinical trial of combined MEK plus EGFR inhibition for chemotherapy-refractory advanced pancreatic adenocarcinoma[J]. Clin Cancer Res, 2016, 22 (1): 61-68.
doi: 10.1158/1078-0432.CCR-15-0979 |
[24] |
GOLAN T, KHVALEVSKY E Z, HUBERT A, et al. RNAi therapy targeting KRAS in combination with chemotherapy for locally advanced pancreatic cancer patients[J]. Oncotarget, 2015, 6(27): 24560-24570.
doi: 10.18632/oncotarget.4183 |
[25] |
BAILEY P, CHANG D K, NONES K, et al. Genomic analyses identify molecular subtypes of pancreatic cancer[J]. Nature, 2016, 531(7592): 47-52.
doi: 10.1038/nature16965 |
[26] |
GOLAN T, O'KANE G M, DENROCHE R E, et al. Genomic features and classification of homologous recombination deficient pancreatic ductal adenocarcinoma[J]. Gastroenterology, 2021, 160(6): 2119-2132.e9.
doi: 10.1053/j.gastro.2021.01.220 |
[27] | 楼文晖. 胰腺癌精准治疗现状、挑战和未来[J]. 中国实用外科杂志, 2021, 41(9): 1014-1016. |
LOU W H. The current status, challenge, and future of precision treatment for pancreatic cancer[J]. Chin J Pract Surg, 2021, 41(9): 1014-1016. | |
[28] | LAI Z W, GOLAN T, KINDLER H L, et al. POLO: Homologous recombination repair gene mutations (HRRm) in metastatic pancreatic cancer (mPaC) tumors[J]. Cancer Res, 2020, 80(<W>16 suppl): Abstract nr CT217. |
[29] |
USON P L S Jr, SAMADDER N J, RIEGERT-JOHNSON D, et al. Clinical impact of pathogenic germline variants in pancreatic cancer: results from a multicenter, prospective, universal genetic testing study[J]. Clin Transl Gastroenterol, 2021, 12(10): e00414.
doi: 10.14309/ctg.0000000000000414 |
[30] |
PISHVAIAN M J, BLAIS E M, BRODY J R, et al. Outcomes in patients with pancreatic adenocarcinoma with genetic mutations in DNA damage response pathways: results from the Know Your Tumor program[J]. JCO Precis Oncol, 2019, 3: 1-10.
doi: 10.1200/PO.19.00115 pmid: 35100730 |
[31] |
HEINING C, HORAK P, UHRIG S, et al. NRG1 fusions in KRAS wild-type pancreatic cancer[J]. Cancer Discov, 2018, 8(9): 1087-1095.
doi: 10.1158/2159-8290.CD-18-0036 |
[32] |
LAETSCH T W, DUBOIS S G, MASCARENHAS L, et al. Larotrectinib for paediatric solid tumours harbouring NTRK gene fusions: phase 1 results from a multicentre, open-label, phase 1/2 study[J]. Lancet Oncol, 2018, 19(5): 705-714.
doi: 10.1016/S1470-2045(18)30119-0 |
[33] |
LAWLOR R T, MATTIOLO P, MAFFICINI A, et al. Tumor mutational burden as a potential biomarker for immunotherapy in pancreatic cancer: systematic review and still-open questions[J]. Cancers (Basel), 2021, 13(13): 3119.
doi: 10.3390/cancers13133119 |
[34] |
LE D T, URAM J N, WANG H, et al. PD-1 blockade in tumors with mismatch-repair deficiency[J]. N Engl J Med, 2015, 372(26): 2509-2520.
doi: 10.1056/NEJMoa1500596 |
[35] |
HU Z I, SHIA J R, STADLER Z K, et al. Evaluating mismatch repair deficiency in pancreatic adenocarcinoma: challenges and recommendations[J]. Clin Cancer Res, 2018, 24(6): 1326-1336.
doi: 10.1158/1078-0432.CCR-17-3099 pmid: 29367431 |
[36] |
KURZ E, HIRSCH C A, DALTON T, et al. Exercise-induced engagement of the IL-15/IL-15Rα axis promotes anti-tumor immunity in pancreatic cancer[J]. Cancer Cell, 2022, 40(7): 720-737.e5.
doi: 10.1016/j.ccell.2022.05.006 pmid: 35660135 |
[37] |
ZHU X F, CAO Y S, LIU W Y, et al. Stereotactic body radiotherapy plus pembrolizumab and trametinib versus stereotactic body radiotherapy plus gemcitabine for locally recurrent pancreatic cancer after surgical resection: an open-label, randomised, controlled, phase 2 trial[J]. Lancet Oncol, 2022, 23(3): e105-e115.
doi: 10.1016/S1470-2045(22)00066-3 pmid: 35240087 |
[38] | HENDIFAR A, BLAIS E M, WOLPIN B, et al. Retrospective case series analysis of RAF family alterations in pancreatic cancer: real-world outcomes from targeted and standard therapies[J]. JCO Precis Oncol, 2021, 5: PO.20.00494. |
[39] |
AGUIRRE A J, NOWAK J A, CAMARDA N D, et al. Real-time genomic characterization of advanced pancreatic cancer to enable precision medicine[J]. Cancer Discov, 2018, 8(9): 1096-1111.
doi: 10.1158/2159-8290.CD-18-0275 pmid: 29903880 |
[40] |
CHOU A, WADDELL N, COWLEY M J, et al. Clinical and molecular characterization of HER2 amplified-pancreatic cancer[J]. Genome Med, 2013, 5(8): 78.
doi: 10.1186/gm482 pmid: 24004612 |
[41] |
KLEIN A P, BRUNE K A, PETERSEN G M, et al. Prospective risk of pancreatic cancer in familial pancreatic cancer kindreds[J]. Cancer Res, 2004, 64(7): 2634-2638.
pmid: 15059921 |
[42] |
BRUNE K A, LAU B, PALMISANO E, et al. Importance of age of onset in pancreatic cancer kindreds[J]. J Natl Cancer Inst, 2010, 102(2): 119-126.
doi: 10.1093/jnci/djp466 pmid: 20068195 |
[43] | HU C L, LADUCA H, SHIMELIS H, et al. Multigene hereditary cancer panels reveal high-risk pancreatic cancer susceptibility genes[J]. JCO Precis Oncol, 2018, 2. PO. 17. 00291. |
[44] |
VARGHESE A M, SINGH I, SINGH R, et al. Early-onset pancreas cancer: clinical descriptors, genomics, and outcomes[J]. J Natl Cancer Inst, 2021, 113(9): 1194-1202.
doi: 10.1093/jnci/djab038 pmid: 33755158 |
[45] |
CHMIELECKI J, HUTCHINSON K E, FRAMPTON G M, et al. Comprehensive genomic profiling of pancreatic acinar cell carcinomas identifies recurrent RAF fusions and frequent inactivation of DNA repair genes[J]. Cancer Discov, 2014, 4(12): 1398-1405.
doi: 10.1158/2159-8290.CD-14-0617 |
[46] |
JIAO Y C, YONESCU R, OFFERHAUS G J, et al. Whole-exome sequencing of pancreatic neoplasms with acinar differentiation[J]. J Pathol, 2014, 232(4): 428-435.
doi: 10.1002/path.4310 |
[47] | 王欢, 金钢. 胰腺癌精准治疗的现状和展望[J]. 中国普通外科杂志, 2021, 30(9): 997-1005. |
WANG H, JIN G. Current status and future perspective of precision medicine in pancreatic cancer treatment[J]. Chin J Gen Surg, 2021, 30(9): 997-1005. | |
[48] |
COLLISSON E A. Bringing pancreas cancer into the lab[J]. Cancer Discov, 2018, 8(9): 1062-1063.
doi: 10.1158/2159-8290.CD-18-0811 pmid: 30181169 |
[49] |
BRAR G, BLAIS E M, JOSEPH BENDER R, et al. Multi-omic molecular comparison of primary versus metastatic pancreatic tumours[J]. Br J Cancer, 2019, 121(3): 264-270.
doi: 10.1038/s41416-019-0507-5 |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
沪ICP备12009617
Powered by Beijing Magtech Co. Ltd