China Oncology ›› 2024, Vol. 34 ›› Issue (2): 210-219.doi: 10.19401/j.cnki.1007-3639.2024.02.009
• Review • Previous Articles Next Articles
WU Hongji1(), WANG Haixia2,3,4, WANG Ling2,3,4, LUO Xiaogang1, ZOU Dongling2,3,4(
)
Received:
2023-07-24
Revised:
2023-10-03
Online:
2024-02-29
Published:
2024-03-14
Contact:
ZOU Dongling
Share article
CLC Number:
WU Hongji, WANG Haixia, WANG Ling, LUO Xiaogang, ZOU Dongling. Application progress and challenges of artificial intelligence in organoid research[J]. China Oncology, 2024, 34(2): 210-219.
[1] |
SATO T, VRIES R G, SNIPPERT H J, et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche[J]. Nature, 2009, 459(7244): 262-265.
doi: 10.1038/nature07935 |
[2] |
中国抗癌协会肿瘤多学科诊疗专业委员会, 中国抗癌协会肿瘤内分泌专业委员会. 肿瘤类器官诊治平台的质量控制标准中国专家共识(2022年版)[J]. 中国癌症杂志, 2022, 32(7): 657-668.
doi: 10.19401/j.cnki.1007-3639.2022.07.010 |
The Society of Cancer Multidisciplinary Diagnosis and Treatment, China Anti-Cancer Association, the Society of Cancer Endocrinology, China Anti-Cancer Association. Chinese experts consensus on quality control standards for tumor organoids diagnosis and treatment platform (2022 version)[J]. China Oncol, 2022, 32(7): 657-668. | |
[3] |
VAN DE WETERING M, FRANCIES H E, FRANCIS J M, et al. Prospective derivation of a living organoid biobank of colorectal cancer patients[J]. Cell, 2015, 161(4): 933-945.
doi: 10.1016/j.cell.2015.03.053 pmid: 25957691 |
[4] |
LI X D, FRANCIES H E, SECRIER M, et al. Organoid cultures recapitulate esophageal adenocarcinoma heterogeneity providing a model for clonality studies and precision therapeutics[J]. Nat Commun, 2018, 9(1): 2983.
doi: 10.1038/s41467-018-05190-9 pmid: 30061675 |
[5] |
王若彤, 王欣, 沈波. 类器官在肿瘤转化医学中的应用和进展[J]. 中国癌症杂志, 2022, 32(11): 1105-1114.
doi: 10.19401/j.cnki.1007-3639.2022.11.009 |
WANG R T, WANG X, SHEN B. Application and progress of organoids in tumor translational medicine[J]. China Oncol, 2022, 32(11): 1105-1114. | |
[6] |
GAO D, VELA I, SBONER A, et al. Organoid cultures derived from patients with advanced prostate cancer[J]. Cell, 2014, 159(1): 176-187.
doi: S0092-8674(14)01047-2 pmid: 25201530 |
[7] |
BOJ S F, HWANG C I, BAKER L A, et al. Organoid models of human and mouse ductal pancreatic cancer[J]. Cell, 2015, 160(1/2): 324-338.
doi: 10.1016/j.cell.2014.12.021 |
[8] |
HILL S J, DECKER B, ROBERTS E A, et al. Prediction of DNA repair inhibitor response in short-term patient-derived ovarian cancer organoids[J]. Cancer Discov, 2018, 8(11): 1404-1421.
doi: 10.1158/2159-8290.CD-18-0474 pmid: 30213835 |
[9] |
SMITH R C, TABAR V. Constructing and deconstructing cancers using human pluripotent stem cells and organoids[J]. Cell Stem Cell, 2019, 24(1): 12-24.
doi: S1934-5909(18)30548-4 pmid: 30581078 |
[10] |
芦瑜, 席雨梦, 何晓明, 等. 共培养策略在类器官研究中的应用进展[J]. 中国癌症杂志, 2023, 33(3): 293-302.
doi: 10.19401/j.cnki.1007-3639.2023.03.014 |
LU Y, XI Y M, HE X M, et al. Advances in the application of co-culture strategies in organoids[J]. China Oncol, 2023, 33(3): 293-302. | |
[11] | 马可鑫, 陈晓芳, 李玥, 等. 肿瘤类器官的应用及展望[J]. 中国肿瘤, 2022, 31(4): 284-291. |
MA K X, CHEN X F, LI Y, et al. Application and prospect of tumor organoids[J]. China Cancer, 2022, 31(4): 284-291. | |
[12] | TOSHNIWAL D, GOEL B, SHARMA H. Multistage classification for cardiovascular disease risk prediction[C]//KUMAR N, BHATNAGAR V. International Conference on Big Data Analytics. Cham: Springer, 2015: 258-266. |
[13] |
MANI S, CHEN Y K, ELASY T, et al. Type 2 diabetes risk forecasting from EMR data using machine learning[J]. AMIA Annu Symp Proc, 2012, 2012: 606-615.
pmid: 23304333 |
[14] | BEHROOZI M, SAMI A. A multiple-classifier framework for Parkinson’s disease detection based on various vocal tests[J]. Int J Telemed Appl, 2016, 2016: 6837498. |
[15] |
LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436-444.
doi: 10.1038/nature14539 |
[16] |
ZHAO X M, WU Y H, SONG G D, et al. A deep learning model integrating FCNNs and CRFs for brain tumor segmentation[J]. Med Image Anal, 2018, 43: 98-111.
doi: S1361-8415(17)30141-X pmid: 29040911 |
[17] |
ESTEVA A, KUPREL B, NOVOA R A, et al. Dermatologist-level classification of skin cancer with deep neural networks[J]. Nature, 2017, 542: 115-118.
doi: 10.1038/nature21056 |
[18] |
CHOI E, SCHUETZ A, STEWART W F, et al. Using recurrent neural network models for early detection of heart failure onset[J]. J Am Med Inform Assoc, 2017, 24(2): 361-370.
doi: 10.1093/jamia/ocw112 pmid: 27521897 |
[19] | DEVLIN J, CHANG M W, LEE K, et al. Pre-training of deep bidirectional transformers for language understanding[J]. 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Naacl Hlt 2019), Vol 1, 2019: 4171-86. |
[20] | LIU Z, LIN Y T, CAO Y, et al. Swin transformer: hierarchical vision transformer using shifted Windows[C]//. 2021 IEEE/CVF International Conference on Computer Vision (ICCV). Montreal, QC, Canada. IEEE, 2021: 9992-10002. |
[21] |
LIAN J, DENG J J, HUI E S, et al. Early stage NSCLS patients' prognostic prediction with multi-information using transformer and graph neural network model[J]. Elife, 2022, 11: e80547.
doi: 10.7554/eLife.80547 |
[22] |
NIE D, TRULLO R, LIAN J, et al. Medical image synthesis with context-aware generative adversarial networks[J]. Med Image Comput Comput Assist Interv, 2017, 10435: 417-425.
doi: 10.1007/978-3-319-66179-7_48 pmid: 30009283 |
[23] | ZHU Y P, ZHOU Z C, LIAO G J, et al. Csrgan: medical image super-resolution using a generative adversarial network[C]//. 2020 IEEE 17th International Symposium on Biomedical Imaging Workshops (ISBI Workshops). Iowa City, IA, USA. IEEE, 2020: 1-4. |
[24] | BANSAL M A, SHARMA D R, KATHURIA D M. A systematic review on data scarcity problem in deep learning: solution and applications[J]. ACM Comput Surv, 54(10s): 208. |
[25] |
GE Y, GUO Y T, DAS S, et al. Few-shot learning for medical text: a review of advances, trends, and opportunities[J]. J Biomed Inform, 2023, 144: 104458.
doi: 10.1016/j.jbi.2023.104458 |
[26] | GUO H X, LI Y J, SHANG J, et al. Learning from class-imbalanced data: review of methods and applications[J]. Expert Syst Appl, 2016, 73(2/3). |
[27] | MCALEER S, FAST A, XUE Y T, et al. Deep learning-assisted multiphoton microscopy to reduce light exposure and expedite imaging in tissues with high and low light sensitivity[J]. Transl Vis Sci Technol, 2021, 10(12): 30. |
[28] |
YANG F S, PHAM T A, BRANDENBERG N, et al. Robust phase unwrapping via deep image prior for quantitative phase imaging[J]. IEEE Trans Image Process, 2021, 30: 7025-7037.
doi: 10.1109/TIP.2021.3099956 |
[29] |
KASSIS T, HERNANDEZ-GORDILLO V, LANGER R, et al. OrgaQuant: human intestinal organoid localization and quantification using deep convolutional neural networks[J]. Sci Rep, 2019, 9(1): 12479.
doi: 10.1038/s41598-019-48874-y pmid: 31462669 |
[30] |
BAO D, WANG L, ZHOU X F, et al. Automated detection and growth tracking of 3D bio-printed organoid clusters using optical coherence tomography with deep convolutional neural networks[J]. Front Bioeng Biotechnol, 2023, 11: 1133090.
doi: 10.3389/fbioe.2023.1133090 |
[31] |
WINKELMAIER G, PARVIN B. An enhanced loss function simplifies the deep learning model for characterizing the 3D organoid models[J]. Bioinformatics, 2021, 37(18): 3084-3085.
doi: 10.1093/bioinformatics/btab120 pmid: 33620423 |
[32] |
SUN A X, HAYAT H, LIU S H, et al. 3D in vivo magnetic particle imaging of human stem cell-derived islet organoid transplantation using a machine learning algorithm[J]. Front Cell Dev Biol, 2021, 9: 704483.
doi: 10.3389/fcell.2021.704483 |
[33] | GRITTI N, LIM J L, ANLAŞ K, et al. MOrgAna: accessible quantitative analysis of organoids with machine learning[J]. Development, 2021, 148(18): dev199611. |
[34] |
ABDUL L, XU J, SOTRA A, et al. D-CryptO: deep learning-based analysis of colon organoid morphology from brightfield images[J]. Lab Chip, 2022, 22(21): 4118-4128.
doi: 10.1039/d2lc00596d pmid: 36200406 |
[35] |
OKAMOTO T, NATSUME Y, DOI M, et al. Integration of human inspection and artificial intelligence-based morphological typing of patient-derived organoids reveals interpatient heterogeneity of colorectal cancer[J]. Cancer Sci, 2022, 113(8): 2693-2703.
doi: 10.1111/cas.v113.8 |
[36] |
KEGELES E, NAUMOV A, KARPULEVICH E A, et al. Convolutional neural networks can predict retinal differentiation in retinal organoids[J]. Front Cell Neurosci, 2020, 14: 171.
doi: 10.3389/fncel.2020.00171 pmid: 32719585 |
[37] |
MERGENTHALER P, HARIHARAN S, PEMBERTON J M, et al. Rapid 3D phenotypic analysis of neurons and organoids using data-driven cell segmentation-free machine learning[J]. PLoS Comput Biol, 2021, 17(2): e1008630.
doi: 10.1371/journal.pcbi.1008630 |
[38] |
RIOS A C, CLEVERS H. Imaging organoids: a bright future ahead[J]. Nat Methods, 2018, 15(1): 24-26.
doi: 10.1038/nmeth.4537 pmid: 29298292 |
[39] |
HRADECKÁ L, WIESNER D, SUMBAL J, et al. Segmentation and tracking of mammary epithelial organoids in brightfield microscopy[J]. IEEE Trans Med Imaging, 2023, 42(1): 281-290.
doi: 10.1109/TMI.2022.3210714 |
[40] |
BIAN X S, LI G, WANG C, et al. A deep learning model for detection and tracking in high-throughput images of organoid[J]. Comput Biol Med, 2021, 134: 104490.
doi: 10.1016/j.compbiomed.2021.104490 |
[41] |
KOK R N U, HEBERT L, HUELSZ-PRINCE G, et al. OrganoidTracker: efficient cell tracking using machine learning and manual error correction[J]. PLoS One, 2020, 15(10): e0240802.
doi: 10.1371/journal.pone.0240802 |
[42] |
BALLWEG R, ENGEVIK K A, MONTROSE M H, et al. Extracting insights from temporal data by integrating dynamic modeling and machine learning[J]. Front Physiol, 2020, 11: 1012.
doi: 10.3389/fphys.2020.01012 pmid: 32903488 |
[43] |
LIBBY A R G, BRIERS D, HAGHIGHI I, et al. Automated design of pluripotent stem cell self-organization[J]. Cell Syst, 2019, 9(5): 483-495.e10.
doi: S2405-4712(19)30384-9 pmid: 31759947 |
[44] | CHEN K Y, SRINIVASAN T, LIN C, et al. Single-cell transcriptomics reveals heterogeneity and drug response of human colorectal cancer organoids[C]//. 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Honolulu, HI, USA. IEEE, 2018: 2378-2381. |
[45] |
PENG D, GLEYZER R, TAI W H, et al. Evaluating the transcriptional fidelity of cancer models[J]. Genome Med, 2021, 13(1): 73.
doi: 10.1186/s13073-021-00888-w pmid: 33926541 |
[46] |
FENG W, SCHRIEVER H, JIANG S, et al. Computational profiling of hiPSC-derived heart organoids reveals chamber defects associated with NKX2-5 deficiency[J]. Commun Biol, 2022, 5(1): 399.
doi: 10.1038/s42003-022-03346-4 pmid: 35488063 |
[47] | HE C F, KALAFUT N C, SANDOVAL S O, et al. BOMA, a machine-learning framework for comparative gene expression analysis across brains and organoids[J]. Cell Rep Methods, 2023, 3(2): 100409. |
[48] |
DEVALL M, DAMPIER C H, EATON S, et al. Novel insights into the molecular mechanisms underlying risk of colorectal cancer from smoking and red/processed meat carcinogens by modeling exposure in normal colon organoids[J]. Oncotarget, 2021, 12(19): 1863-1877.
doi: 10.18632/oncotarget.28058 pmid: 34548904 |
[49] |
KIM I S, WU J Y, RAHME G J, et al. Parallel single-cell RNA-seq and genetic recording reveals lineage decisions in developing embryoid bodies[J]. Cell Rep, 2020, 33(1): 108222.
doi: 10.1016/j.celrep.2020.108222 |
[50] | HASIB M, LYBRAND Z, ESTEVEZ V N, et al. Charactering hESCs organoids from electrical signals with machine learning[C]//. 2019 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI). Chicago, IL, USA. IEEE, 2019: 1-4. |
[51] |
TUBBESING K, MOSKWA N, KHOO T C, et al. Raman microspectroscopy fingerprinting of organoid differentiation state[J]. Cell Mol Biol Lett, 2022, 27(1): 53.
doi: 10.1186/s11658-022-00347-3 pmid: 35764935 |
[52] |
BECKER L, FISCHER F, FLECK J L, et al. Data-driven identification of biomarkers for in situ monitoring of drug treatment in bladder cancer organoids[J]. Int J Mol Sci, 2022, 23(13): 6956.
doi: 10.3390/ijms23136956 |
[53] |
SPILLER E R, UNG N, KIM S, et al. Imaging-based machine learning analysis of patient-derived tumor organoid drug response[J]. Front Oncol, 2021, 11: 771173.
doi: 10.3389/fonc.2021.771173 |
[54] |
LARSEN B M, KANNAN M, LANGER L F, et al. A pan-cancer organoid platform for precision medicine[J]. Cell Rep, 2021, 36(4): 109429.
doi: 10.1016/j.celrep.2021.109429 |
[55] |
KONG J, LEE H, KIM D, et al. Network-based machine learning in colorectal and bladder organoid models predicts anti-cancer drug efficacy in patients[J]. Nat Commun, 2020, 11(1): 5485.
doi: 10.1038/s41467-020-19313-8 pmid: 33127883 |
[56] |
PARK M, KWON J, KONG J, et al. A patient-derived organoid-based radiosensitivity model for the prediction of radiation responses in patients with rectal cancer[J]. Cancers, 2021, 13(15): 3760.
doi: 10.3390/cancers13153760 |
[57] |
ESMAIL S, DANTER W R. NEUBOrg: Artificially induced pluripotent stem cell-derived brain organoid to model and study genetics of Alzheimer’s disease progression[J]. Front Aging Neurosci, 2021, 13: 643889.
doi: 10.3389/fnagi.2021.643889 |
[58] |
ESMAIL S, DANTER W R. Artificially induced pluripotent stem cell-derived whole-brain organoid for modelling the pathophysiology of metachromatic leukodystrophy and drug repurposing[J]. Biomedicines, 2021, 9(4): 440.
doi: 10.3390/biomedicines9040440 |
[59] |
BAI L, WU Y, LI G F, et al. AI-enabled organoids: construction, analysis, and application[J]. Bioact Mater, 2024, 31: 525-548.
doi: 10.1016/j.bioactmat.2023.09.005 pmid: 37746662 |
[1] | TAN Hong, LIN Shenggeng, XIONG Yi. Current status and challenges of artificial intelligence-enabled prediction of synergistic cancer drug combinations [J]. China Oncology, 2024, 34(9): 807-813. |
[2] | CHEN Hong, CAO Zhiyun. Recent progress in the construction and application of patient-derived pancreatic cancer organoid models [J]. China Oncology, 2024, 34(6): 590-597. |
[3] | JIANG Tiaoyan, JIA Tianying, ZHANG Qin. Contrast-enhanced computed tomography-based radiomics models for the risk categorization of thymoma [J]. China Oncology, 2024, 34(6): 581-589. |
[4] | ZHUANG Han, HU Weigang, ZHANG Zhen, WANG Jiazhou. Deep learning-based lymphocyte infiltration detection on pathological images [J]. China Oncology, 2024, 34(4): 409-417. |
[5] | JIANG Mengqi, HAN Yuchen, FU Xiaolong. Research progress on H-E stained whole slide image analysis by artificial intelligence in lung cancer [J]. China Oncology, 2024, 34(3): 306-315. |
[6] | JIANG Yuanyuan, WEI Wenfei, WU Jingya, LI Huawen. Application of organoids in drug screening of gynecological malignant tumors [J]. China Oncology, 2024, 34(11): 1053-1060. |
[7] | OUYANG Fei, WANG Yang, CHEN Yu, PEI Guoqing, WANG Ling, ZHANG Yang, SHI Lei. Construction of the prediction model of breast cancer bone metastasis based on machine learning [J]. China Oncology, 2024, 34(10): 903-914. |
[8] | LIU Yang, HU Yiyang, LIU Yueping, NIU Shuyao, DING Pingan, TIAN Yuan, GUO Honghai, YANG Peigang, ZHANG Ze, ZHENG Tao, TAN Bibo, FAN Liqiao, LI Yong, ZHAO Qun. The value of artificial intelligence-assisted technology in HER2 assessmentof gastric cancer patients receiving neoadjuvant chemotherapy [J]. China Oncology, 2023, 33(4): 377-387. |
[9] | GAO Heli, XU Jin, CHEN Jie, YU Xianjun. Updates on precision medicine of pancreatic neuroendocrine tumor [J]. China Oncology, 2023, 33(11): 993-1001. |
[10] | ZHANG Xiaowei, LIU Xin, LUO Zhiguo. Progress in clinical management of cancer of unknown primary based on molecular testing at 2023 ESMO [J]. China Oncology, 2023, 33(11): 989-992. |
[11] | SHEN Jie, LIU Yajing, MO Miao, ZHOU Jin, WANG Zezhou, ZHOU Changming, ZHOU Shichong, CHANG Cai, ZHENG Ying. Effectiveness of artificial intelligence-assisted ultrasound for breast cancer screening in Chinese women [J]. China Oncology, 2023, 33(11): 1002-1008. |
[12] | The Society of Cancer Multidisciplinary Diagnosis and Treatment, China Anti-Cancer Association, The Society of Cancer Endocrinology, China Anti-Cancer Association. Chinese experts consensus on quality control standards for tumor organoids diagnosis and treatment platform (2022 version) [J]. China Oncology, 2022, 32(7): 657-668. |
[13] | XU Wenhao, TIAN Xi, Aihetaimujiang·Anwaier , QU Yuanyuan, SHI Guohai, ZHANG Hailiang, YE Dingwei. A systematic review of current advancements of artificial intelligence in genitourinary cancers [J]. China Oncology, 2022, 32(1): 68-74. |
[14] | YANG Xin, ZHANG Zhen. Research progress of artificial intelligence based on deep learning in digital pathology [J]. China Oncology, 2021, 31(2): 151-155. |
[15] | CAO Xiaoshan, CONG Binbin. The progress of treatment for triple-negative breast cancer in the era of precision medicine [J]. China Oncology, 2019, 29(12): 971-976. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
沪ICP备12009617
Powered by Beijing Magtech Co. Ltd