China Oncology ›› 2024, Vol. 34 ›› Issue (3): 299-305.doi: 10.19401/j.cnki.1007-3639.2024.03.008
• Review • Previous Articles Next Articles
CHEN Yifan1,2(), LI Ting1,2, WANG Biyun1,2(
)
Received:
2023-08-01
Revised:
2023-11-28
Online:
2024-03-30
Published:
2024-04-08
Contact:
WANG Biyun
Share article
CLC Number:
CHEN Yifan, LI Ting, WANG Biyun. Research progress of CCR8 in tumor immunotherapy[J]. China Oncology, 2024, 34(3): 299-305.
[1] | WEAVER J D, STACK E C, BUGGÉ J A, et al. Differential expression of CCR8 in tumors versus normal tissue allows specific depletion of tumor-infiltrating T regulatory cells by GS-1811, a novel Fc-optimized anti-CCR8 antibody[J]. Oncoimmunology, 2022, 11(1): 2141007. |
[2] | VAN DAMME H, DOMBRECHT B, KISS M, et al. Therapeutic depletion of CCR8+ tumor-infiltrating regulatory T cells elicits antitumor immunity and synergizes with anti-PD-1 therapy[J]. J Immunother Cancer, 2021, 9(2): e001749. |
[3] | MOSER B. Chemokine receptor-targeted therapies: special case for CCR8[J]. Cancers, 2022, 14(3): 511. |
[4] |
MCCULLY M L, MOSER B. The human cutaneous chemokine system[J]. Front Immunol, 2011, 2: 33.
doi: 10.3389/fimmu.2011.00033 pmid: 22566823 |
[5] |
KARIN N. Chemokines and cancer: new immune checkpoints for cancer therapy[J]. Curr Opin Immunol, 2018, 51: 140-145.
doi: S0952-7915(17)30141-3 pmid: 29579623 |
[6] | KUEHNEMUTH B, PISEDDU I, WIEDEMANN G M, et al. CCL1 is a major regulatory T cell attracting factor in human breast cancer[J]. BMC Cancer, 2018, 18(1): 1278. |
[7] |
LIU S S, LIU C, LV X X, et al. The chemokine CCL1 triggers an AMFR-SPRY1 pathway that promotes differentiation of lung fibroblasts into myofibroblasts and drives pulmonary fibrosis[J]. Immunity, 2021, 54(10): 2433-2435.
doi: 10.1016/j.immuni.2021.09.009 |
[8] | CHEN B W, ZHANG S Y, LI Q Y, et al. Bioinformatics identification of CCL8/21 as potential prognostic biomarkers in breast cancer microenvironment[J]. Biosci Rep, 2020, 40(11): BSR20202042. |
[9] |
LOU X L, ZHAO K, XU J Z, et al. CCL8 as a promising prognostic factor in diffuse large B-cell lymphoma via M2 macrophage interactions: a bioinformatic analysis of the tumor microenvironment[J]. Front Immunol, 2022, 13: 950213.
doi: 10.3389/fimmu.2022.950213 |
[10] |
CHENIVESSE C, TSICOPOULOS A. CCL18 - beyond chemotaxis[J]. Cytokine, 2018, 109: 52-56.
doi: S1043-4666(18)30034-6 pmid: 29402725 |
[11] | KORBECKI J, KOJDER K, SIMIŃSKA D, et al. CC chemokines in a tumor: a review of pro-cancer and anti-cancer properties of the ligands of receptors CCR1, CCR2, CCR3, and CCR4[J]. Int J Mol Sci, 2020, 21(21): 8412. |
[12] |
PLITAS G, RUDENSKY A Y. Regulatory T cells in cancer[J]. Annu Rev Cancer Biol, 2020, 4: 459-477.
doi: 10.1146/cancerbio.2020.4.issue-1 |
[13] |
WING J B, TANAKA A, SAKAGUCHI S. Human FOXP3+ regulatory T cell heterogeneity and function in autoimmunity and cancer[J]. Immunity, 2019, 50(2): 302-316.
doi: 10.1016/j.immuni.2019.01.020 |
[14] | ANGELOVA M, CHAROENTONG P, HACKL H, et al. Characterization of the immunophenotypes and antigenomes of colorectal cancers reveals distinct tumor escape mechanisms and novel targets for immunotherapy[J]. Genome Biol, 2015, 16(1): 64. |
[15] |
DE SIMONE M, ARRIGONI A, ROSSETTI G, et al. Transcriptional landscape of human tissue lymphocytes unveils uniqueness of tumor-infiltrating T regulatory cells[J]. Immunity, 2016, 45(5): 1135-1147.
doi: S1074-7613(16)30432-0 pmid: 27851914 |
[16] |
SUN F, ZHANG C, AI S C, et al. Identification of hub genes in gastric cancer by integrated bioinformatics analysis[J]. Transl Cancer Res, 2021, 10(6): 2831-2840.
doi: 10.21037/tcr-20-3540 pmid: 35116593 |
[17] |
WEI F Z, MEI S W, WANG Z J, et al. HAMP as a prognostic biomarker for colorectal cancer based on tumor microenvironment analysis[J]. Front Oncol, 2022, 12: 884474.
doi: 10.3389/fonc.2022.884474 |
[18] |
VILLARREAL D O, L’HUILLIER A, ARMINGTON S, et al. Targeting CCR8 induces protective antitumor immunity and enhances vaccine-induced responses in colon cancer[J]. Cancer Res, 2018, 78(18): 5340-5348.
doi: 10.1158/0008-5472.CAN-18-1119 pmid: 30026324 |
[19] |
PLITAS G, KONOPACKI C, WU K M, et al. Regulatory T cells exhibit distinct features in human breast cancer[J]. Immunity, 2016, 45(5): 1122-1134.
doi: S1074-7613(16)30443-5 pmid: 27851913 |
[20] |
WANG L, SIMONS D L, LU X Y, et al. Connecting blood and intratumoral Treg cell activity in predicting future relapse in breast cancer[J]. Nat Immunol, 2019, 20(9): 1220-1230.
doi: 10.1038/s41590-019-0429-7 |
[21] |
RUCKES T, SAUL D, VAN SNICK J, et al. Autocrine antiapoptotic stimulation of cultured adult T-cell leukemia cells by overexpression of the chemokine I-309[J]. Blood, 2001, 98(4): 1150-1159.
doi: 10.1182/blood.v98.4.1150 pmid: 11493464 |
[22] |
RONSLEY R, KARIMINIA A, NG B, et al. The TLR9 agonist (GNKG168) induces a unique immune activation pattern in vivo in children with minimal residual disease positive acute leukemia: results of the TACL T2009-008 phase I study[J]. Pediatr Hematol Oncol, 2019, 36(8): 468-481.
doi: 10.1080/08880018.2019.1667461 pmid: 31530240 |
[23] |
ZHENG D W, WANG X D, CHENG L, et al. The chemokine receptor CCR8 is a target of chimeric antigen T cells for treating T cell malignancies[J]. Front Immunol, 2022, 13: 808347.
doi: 10.3389/fimmu.2022.808347 |
[24] |
ERUSLANOV E, STOFFS T, KIM W J, et al. Expansion of CCR8(+) inflammatory myeloid cells in cancer patients with urothelial and renal carcinomas[J]. Clin Cancer Res, 2013, 19(7): 1670-1680.
doi: 10.1158/1078-0432.CCR-12-2091 pmid: 23363815 |
[25] |
LIU X Q, XU X Y, DENG W, et al. CCL18 enhances migration, invasion and EMT by binding CCR8 in bladder cancer cells[J]. Mol Med Rep, 2019, 19(3): 1678-1686.
doi: 10.3892/mmr.2018.9791 pmid: 30592282 |
[26] |
WANG T, ZHOU Q, ZENG H, et al. CCR8 blockade primes anti-tumor immunity through intratumoral regulatory T cells destabilization in muscle-invasive bladder cancer[J]. Cancer Immunol Immunother, 2020, 69(9): 1855-1867.
doi: 10.1007/s00262-020-02583-y pmid: 32367308 |
[27] |
SUN Y X, ZHANG Q, YAO L L, et al. Comprehensive analysis reveals novel gene signature in head and neck squamous cell carcinoma: predicting is associated with poor prognosis in patients[J]. Transl Cancer Res, 2020, 9(10): 5882-5892.
doi: 10.21037/tcr-20-805 pmid: 35117201 |
[28] |
MENG L L, HE X X, HONG Q, et al. CCR4, CCR8, and P2RY14 as prognostic factors in head and neck squamous cell carcinoma are involved in the remodeling of the tumor microenvironment[J]. Front Oncol, 2021, 11: 618187.
doi: 10.3389/fonc.2021.618187 |
[29] |
FRAGA M, YÁÑEZ M, SHERMAN M, et al. Immunomodulation of T helper cells by tumor microenvironment in oral cancer is associated with CCR8 expression and rapid membrane vitamin D signaling pathway[J]. Front Immunol, 2021, 12: 643298.
doi: 10.3389/fimmu.2021.643298 |
[30] |
FUJIKAWA M, KOMA Y I, HOSONO M, et al. Chemokine (C-C motif) ligand 1 derived from tumor-associated macrophages contributes to esophageal squamous cell carcinoma progression via CCR8-mediated Akt/proline-rich Akt substrate of 40 kDa/mammalian target of rapamycin pathway[J]. Am J Pathol, 2021, 191(4): 686-703.
doi: 10.1016/j.ajpath.2021.01.004 pmid: 33460563 |
[31] | HARUNA M, UEYAMA A, YAMAMOTO Y, et al. The impact of CCR8+ regulatory T cells on cytotoxic T cell function in human lung cancer[J]. Sci Rep, 2022, 12(1): 5377. |
[32] |
DAS S, SARROU E, PODGRABINSKA S, et al. Tumor cell entry into the lymph node is controlled by CCL1 chemokine expressed by lymph node lymphatic sinuses[J]. J Exp Med, 2013, 210(8): 1509-1528.
doi: 10.1084/jem.20111627 |
[33] | BERENGUER J, LAGERWEIJ T, ZHAO X W, et al. Glycosylated extracellular vesicles released by glioblastoma cells are decorated by CCL18 allowing for cellular uptake via chemokine receptor CCR8[J]. J Extracell Vesicles, 2018, 7(1): 1446660. |
[34] | HUANG Y M, MOTTA E, NANVUMA C, et al. Microglia/macrophage-derived human CCL18 promotes glioma progression via CCR8-ACP5 axis analyzed in humanized slice model[J]. Cell Rep, 2022, 39(2): 110670. |
[35] |
GIUSTINIANI J, DOBOS G, MOINS-TEISSERENC H, et al. CCR8 is a new therapeutic target in cutaneous T-cell lymphomas[J]. Blood Adv, 2022, 6(11): 3507-3512.
doi: 10.1182/bloodadvances.2021006512 pmid: 35201316 |
[36] |
CAMPBELL J R, MCDONALD B R, MESKO P B, et al. Fc-optimized anti-CCR8 antibody depletes regulatory T cells in human tumor models[J]. Cancer Res, 2021, 81(11): 2983-2994.
doi: 10.1158/0008-5472.CAN-20-3585 |
[37] | KIDANI Y, NOGAMI W, YASUMIZU Y, et al. CCR8-targeted specific depletion of clonally expanded Treg cells in tumor tissues evokes potent tumor immunity with long-lasting memory[J]. Proc Natl Acad Sci U S A, 2022, 119(7): e2114282119. |
[38] |
WHITESIDE S K, GRANT F M, GYORI D S, et al. CCR8 marks highly suppressive Treg cells within tumours but is dispensable for their accumulation and suppressive function[J]. Immunology, 2021, 163(4): 512-520.
doi: 10.1111/imm.13337 pmid: 33838058 |
[39] |
LIU F T, WU H Y. CC chemokine receptors in lung adenocarcinoma: the inflammation-related prognostic biomarkers and immunotherapeutic targets[J]. J Inflamm Res, 2021, 14: 267-285.
doi: 10.2147/JIR.S278395 pmid: 33574689 |
[40] |
LI H L, WANG L H, HU Y L, et al. Clinical and prognostic significance of CC chemokine receptor type 8 protein expression in gastrointestinal stromal tumors[J]. World J Gastroenterol, 2020, 26(31): 4656-4668.
doi: 10.3748/wjg.v26.i31.4656 |
[41] |
CHEN G, CAI Z D, LIN Z Y, et al. ARNT-dependent CCR8 reprogrammed LDH isoform expression correlates with poor clinical outcomes of prostate cancer[J]. Mol Carcinog, 2020, 59(8): 897-907.
doi: 10.1002/mc.v59.8 |
[42] |
YI G, GUO S W, LIU W Y, et al. Identification and functional analysis of heterogeneous FOXP3+ Treg cell subpopulations in human pancreatic ductal adenocarcinoma[J]. Sci Bull, 2018, 63(15): 972-981.
doi: 10.1016/j.scib.2018.05.028 |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
沪ICP备12009617
Powered by Beijing Magtech Co. Ltd