China Oncology ›› 2024, Vol. 34 ›› Issue (5): 473-484.doi: 10.19401/j.cnki.1007-3639.2024.05.004
• Article • Previous Articles Next Articles
GUAN Ruirui1,2(), HAO Qian3, ZHANG Yaqi1,4, SUN Qinggang1,4, CHEN Yitian1,4, LI Xiumin2,5, ZHOU Xiang3(
), HAN Tao1(
)
Received:
2023-12-27
Revised:
2024-03-06
Online:
2024-05-30
Published:
2024-06-07
Contact:
HAN Tao, ZHOU Xiang
Share article
CLC Number:
GUAN Ruirui, HAO Qian, ZHANG Yaqi, SUN Qinggang, CHEN Yitian, LI Xiumin, ZHOU Xiang, HAN Tao. CDC20 facilitates the proliferation of esophageal carcinoma cell by stabilizing NLRP3 expression[J]. China Oncology, 2024, 34(5): 473-484.
Fig. 2
Immunohistochemical detection of NLRP3 and CDC20 protein expression in ESCC tissues and adjacent tissues, as well as correlation analysis between NLRP3 and CDC20 protein A, B: CDC20 (A) and NLRP3 (B) is highly expressed in ESCC tissues (SP staining, ×40). C, D: Comparison of CDC20 (C) and NLRP3 (D) scores between ESCC tissues and adjacent tissues generated in (A, B). E, F: The protein expression levels of CDC20 (E) and NLRP3 (F) in ESCC with different degrees of differentiation (Ⅰ-Ⅳ phase). G: Positive correlation between CDC20 and NLRP3 expression in ESCC tissues. ***: P<0.001, compared with cancer tissues."
Tab. 1
The clinicopathological features of 80 patients with ESCC were correlated with the expression of NLRP3 and CDC20 proteins"
Pathologic feature | Total n | CDC20 expression n | χ2 value | P value | NLRP3 expression n | χ2 value | P value | ||
---|---|---|---|---|---|---|---|---|---|
High | Low | High | Low | ||||||
Organizational classification | 5.788 | 0.016 | 4.290 | 0.038 | |||||
G1 | 54 | 24 | 30 | 36 | 18 | ||||
G2-G3 | 26 | 19 | 7 | 11 | 15 | ||||
Depth of infiltration | 8.459 | 0.004 | 4.921 | 0.027 | |||||
T1-T2 | 15 | 3 | 12 | 5 | 10 | ||||
T3-T4 | 65 | 40 | 25 | 42 | 23 | ||||
Lymph node metastasis | 5.729 | 0.020 | 5.071 | 0.024 | |||||
No | 57 | 26 | 31 | 29 | 28 | ||||
Yes | 23 | 17 | 6 | 18 | 5 | ||||
TNM staging | |||||||||
Ⅰ | 27 | 9 | 18 | 3.884 | 0.049 | 13 | 14 | 3.884 | 0.049 |
Ⅱ | 21 | 13 | 8 | 16 | 5 | ||||
Ⅲ | 25 | 19 | 6 | 5.153 | 0.020 | 17 | 8 | 6.412 | 0.011 |
Ⅳ | 7 | 2 | 5 | 1 | 6 |
Fig. 3
Analysis of the correlation between CDC20, NLRP3 and immune infiltrating cells A, B: The TIMER system assessed the correlation between CDC20 (A), NLRP3 (B) and the level of infiltration of different immune cells (CD8+ T cells, CD4+ T cells, macrophages, B cells, dendritic cells and neutrophils) in ESCA. C, D: Effect of CAN on the level of immune cell infiltration in ESCA based on CDC20 (C) and NLRP3 (D) characteristics. E: Relationship between CDC20 and NLRP3 in TME. *: P<0.05; **: P<0.01;***: P<0.001."
Fig. 4
CDC20 protein positively regulates NLRP3 expression A: Co-IP showed that CDC20 proteins bind to NLRP3 proteins. B: Schematic diagram of domain structure for CDC20 and NLRP3. C: Co-IP shows that the binding region of CDC20 and NLRP3 is located in the LRR region. D, E: WB showed that knockdown of CDC20 in EC9706 (D) and KYSE150 (E) cells resulted in decreased levels of NLPR3 protein expression. F, G: Image J analysis of NLRP3 protein generated in (D, E). H, I: qRT-PCR analysis the mRNA level of EC9706 (H), KYSE150 (E) cells generated in (D, E). J, L: WB results showed that knockdown of CDC20 and treatment with MG132 in EC9706 (J) and KYSE150 (L) cells resulted in elevated levels of NLRP3 protein compared to shscr. K-M: Image J analysis of NLRP3 protein generated in (J, L). N: WB results showed that knockdown of CDC20 decreased the ubiquitination level of NLRP3 in EC9706. **: P<0.01; ****: P<0.000 1."
Fig. 5
Cell proliferation weas reduced after knockdown of CDC20 and NLRP3 in ESCA cell lines A, B: Cell proliferation analysis showed significant reduction in cell proliferation after CDC20 knockdown in EC9706 (A) and KYSE150 (B). C, D: Western blot analysis of EC9706 (C) and KYSE150 (D) cells infected with control (shscr) or the indicated shCDC20 lentiviral shRNA constructs. E, F: Cell proliferation analysis showed significant reduction in cell proliferation after NLRP3 knockdown in EC9706 (E), KYSE150 (F). G, H: WB analysis of EC9706 (G) and KYSE150 (H) cells infected with control (shscr) or the indicated shNLRP3 lentiviral shRNA constructs. *: P<0.05; **: P<0.01; ****: P<0.000 1."
[1] | FATEHI HASSANABAD A, CHEHADE R, BREADNER D, et al. Esophageal carcinoma: towards targeted therapies[J]. Cell Oncol, 2020, 43(2): 195-209. |
[2] | ZHANG Y W. Epidemiology of esophageal cancer[J]. World J Gastroenterol, 2013, 19(34): 5598-5606. |
[3] | SAEI GHARE NAZ M, KARIMAN N, EBADI A, et al. Educational interventions for cervical cancer screening behavior of women: a systematic review[J]. Asian Pac J Cancer Prev, 2018, 19(4): 875-884. |
[4] | CHEN W Q, ZHENG R S, BAADE P D, et al. Cancer statistics in China, 2015[J]. CA Cancer J Clin, 2016, 66(2): 115-132. |
[5] | HAN T, JIANG S L, ZHENG H, et al. Interplay between c-Src and the APC/C co-activator Cdh1 regulates mammary tumorigenesis[J]. Nat Commun, 2019, 10(1): 3716. |
[6] | WAN L X, CHEN M, CAO J X, et al. The APC/C E3 ligase complex activator FZR1 restricts BRAF oncogenic function[J]. Cancer Discov, 2017, 7(4): 424-441. |
[7] | HUANG H C, SHI J, ORTH J D, et al. Evidence that mitotic exit is a better cancer therapeutic target than spindle assembly[J]. Cancer Cell, 2009, 16(4): 347-358. |
[8] | MANCHADO E, GUILLAMOT M, DE CÁRCER G, et al. Targeting mitotic exit leads to tumor regression in vivo: modulation by Cdk1, Mastl, and the PP2A/B55α, δ phosphatase[J]. Cancer Cell, 2010, 18(6): 641-654. |
[9] |
ZHANG Q, HUANG H, LIU A, et al. Cell division cycle 20 (CDC20) drives prostate cancer progression via stabilization of β-catenin in cancer stem-like cells[J]. EBioMedicine, 2019, 42: 397-407.
doi: S2352-3964(19)30172-0 pmid: 30904606 |
[10] | KARRA H, REPO H, AHONEN I, et al. CDC20 and securin overexpression predict short-term breast cancer survival[J]. Br J Cancer, 2014, 110(12): 2905-2913. |
[11] |
JI P, SMITH S M, WANG Y, et al. Inhibition of gliomagenesis and attenuation of mitotic transition by MIIP[J]. Oncogene, 2010, 29(24): 3501-3508.
doi: 10.1038/onc.2010.114 pmid: 20418911 |
[12] | KIM J M, SOHN H Y, YOON S Y, et al. Identification of gastric cancer-related genes using a cDNA microarray containing novel expressed sequence tags expressed in gastric cancer cells[J]. Clin Cancer Res, 2005, 11(2 Pt 1): 473-482. |
[13] |
XIE Q, WU Q L, MACK S C, et al. CDC20 maintains tumor initiating cells[J]. Oncotarget, 2015, 6(15): 13241-13254.
pmid: 25938542 |
[14] | JIANG J H, JEDINAK A, SLIVA D. Ganodermanontriol (GDNT) exerts its effect on growth and invasiveness of breast cancer cells through the down-regulation of CDC20 and uPA[J]. Biochem Biophys Res Commun, 2011, 415(2): 325-329. |
[15] | HE S D, LIU D P, CHEN Z H. REC8 inhibits proliferation, migration and invasion of breast cancer cells by targeting CDC20[J]. Mol Med Rep, 2022, 26(1): 235. |
[16] | PAUL D, GHORAI S, DINESH U S, et al. CDC20 directs proteasome-mediated degradation of the tumor suppressor SMAR1 in higher grades of cancer through the anaphase promoting complex[J]. Cell Death Dis, 2017, 8(6): e2882. |
[17] | YANG G, WANG G, XIONG Y F, et al. CDC20 promotes the progression of hepatocellular carcinoma by regulating epithelial-mesenchymal transition[J]. Mol Med Rep, 2021, 24(1): 483. |
[18] |
MARUCCI G, MORANDI L, MAGRINI E, et al. Gene expression profiling in glioblastoma and immunohistochemical evaluation of IGFBP-2 and CDC20[J]. Virchows Arch, 2008, 453(6): 599-609.
doi: 10.1007/s00428-008-0685-7 pmid: 18953566 |
[19] |
OUELLET V, GUYOT M C, PAGE C L, et al. Tissue array analysis of expression microarray candidates identifies markers associated with tumor grade and outcome in serous epithelial ovarian cancer[J]. Int J Cancer, 2006, 119(3): 599-607.
pmid: 16572426 |
[20] | SAGOO P, GARCIA Z, BREART B, et al. In vivo imaging of inflammasome activation reveals a subcapsular macrophage burst response that mobilizes innate and adaptive immunity[J]. Nat Med, 2016, 22(1): 64-71. |
[21] |
HE Y, HARA H, NÚÑEZ G. Mechanism and regulation of NLRP3 inflammasome activation[J]. Trends Biochem Sci, 2016, 41(12): 1012-1021.
doi: S0968-0004(16)30148-7 pmid: 27669650 |
[22] |
THI H T H, HONG S. Inflammasome as a therapeutic target for cancer prevention and treatment[J]. J Cancer Prev, 2017, 22(2): 62-73.
doi: 10.15430/JCP.2017.22.2.62 pmid: 28698859 |
[23] |
GRIVENNIKOV S I, GRETEN F R, KARIN M. Immunity, inflammation, and cancer[J]. Cell, 2010, 140(6): 883-899.
doi: 10.1016/j.cell.2010.01.025 pmid: 20303878 |
[24] |
PEI H P, TAN F B, LIU L, et al. IL-1β/NF-kb signaling promotes colorectal cancer cell growth through miR-181a/PTEN axis[J]. Arch Biochem Biophys, 2016, 604: 20-26.
doi: 10.1016/j.abb.2016.06.001 pmid: 27264420 |
[25] |
BAE J Y, LEE S W, SHIN Y H, et al. P2X7 receptor and NLRP3 inflammasome activation in head and neck cancer[J]. Oncotarget, 2017, 8(30): 48972-48982.
doi: 10.18632/oncotarget.16903 pmid: 28430665 |
[26] | SIEGEL R, MA J, ZOU Z, et al. Cancer statistics, 2014[J]. CA Cancer J Clin, 2014, 64(1): 9-29. |
[27] | WANG W B, XIAO F, WAN P, et al. EV71 3D protein binds with NLRP3 and enhances the assembly of inflammasome complex[J]. PLoS Pathog, 2017, 13(1): e1006123. |
[28] |
GUARDA G, ZENGER M, YAZDI A S, et al. Differential expression of NLRP3 among hematopoietic cells[J]. J Immunol, 2011, 186(4): 2529-2534.
doi: 10.4049/jimmunol.1002720 pmid: 21257968 |
[29] | GWYER FINDLAY E, HUSSELL T. Macrophage-mediated inflammation and disease: a focus on the lung[J]. Mediators Inflamm, 2012, 2012: 140937. |
[30] | BRAY F, FERLAY J, SOERJOMATARAM I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6): 394-424. |
[31] |
YU S, YIN J J, MIAO J X, et al. Activation of NLRP3 inflammasome promotes the proliferation and migration of esophageal squamous cell carcinoma[J]. Oncol Rep, 2020, 43(4): 1113-1124.
doi: 10.3892/or.2020.7493 pmid: 32323780 |
[32] | ALIDINA A, SIDDIQUI T, BURNEY I, et al. Esophageal cancer: a review[J]. J Pak Med Assoc, 2004, 54(3): 136-141. |
[33] |
MIMURA K, YAMADA L, UJIIE D, et al. Immunotherapy for esophageal squamous cell carcinoma: a review[J]. Fukushima J Med Sci, 2018, 64(2): 46-53.
doi: 10.5387/fms.2018-09 pmid: 30058598 |
[34] | SAYAN M, MOSSMAN B T. The NLRP3 inflammasome in pathogenic particle and fibre-associated lung inflammation and diseases[J]. Part Fibre Toxicol, 2016, 13(1): 51. |
[35] | CAO Z W, FANG Y L, LU Y H, et al. Exposure to nickel oxide nanoparticles induces pulmonary inflammation through NLRP3 inflammasome activation in rats[J]. Int J Nanomedicine, 2016, 11: 3331-3346. |
[36] | 吕本洁, 周孝峰, 王伟隆, 等. 食管鳞癌组织Snail与PDL-1和CD8+T表达及预后分析[J]. 中华肿瘤防治杂志, 2023, 30(2): 78-83. |
[37] | LYU B J, ZHOU X F, WANG W L, et al. Correlation and prognostic analysis of Snail with PD-L1 and CD8+T in esophageal squamous cell carcinoma[J]. Chin J Cancer Prev Treat, 2023, 30(2): 78-83. |
[38] | GOMES-SANTOS I L, AMOOZGAR Z, KUMAR A S, et al. Exercise training improves tumor control by increasing CD8+T-cell infiltration via CXCR3 signaling and sensitizes breast cancer to immune checkpoint blockade[J]. Cancer Immunol Res, 2021, 9(7): 765-778. |
[1] | WEN Ziqiang, LAN Junliang, ZHOU Bo, XU Qiwei. PARP1 promotes the progression of hepatocellular carcinoma by regulating expression of POU2F2 [J]. China Oncology, 2024, 34(9): 848-856. |
[2] | CAO Fei, YU Wenhao, TANG Xiaonan, MA Zidong, CHANG Tingmin, GONG Yabin, LIAO Mingjuan, KANG Xiaohong. Mechanism of LINC01410 promoting proliferation and migration in esophageal squamous cell carcinoma [J]. China Oncology, 2024, 34(8): 753-762. |
[3] | CHEN Xun, ZHENG Zhenxia, RUAN Xueru. Effects of TMCO1 on proliferation and migration of cervical cancer cells [J]. China Oncology, 2024, 34(6): 571-580. |
[4] | SUN Rongqi, SONG Ning, ZHENG Wentian, ZHANG Xinyue, LI Minmin, GONG Hui, JIANG Yingying. Effect of long noncoding RNA FLJ30679 on proliferation and migration of oral squamous cell carcinoma cells [J]. China Oncology, 2024, 34(5): 439-450. |
[5] | XIONG Jiayan, LEI Wei, YOU Bo, ZHANG Zhenxin, XIE Haijing, SHAN Ying, XIA Tian, ZHOU Yong. Study on the mechanism of DDX6 promoting proliferation and migration of nasopharyngeal carcinoma cells by regulating stability of CKMT1A mRNA [J]. China Oncology, 2024, 34(5): 451-459. |
[6] | ZHOU Xueqin, LUAN Yanchao, ZHAO Li, RONG Chaochao, YANG Na. Expression of CDC20 in lung adenocarcinoma tissues and its effect on the proliferation and invasion of lung adenocarcinoma cells [J]. China Oncology, 2024, 34(5): 460-472. |
[7] | WANG Xuemei, CHENG Yu, QI Jiemin. PRMT7 inhibits proliferation and migration of bladder cancer cells by regulating Notch signaling pathway [J]. China Oncology, 2023, 33(5): 437-444. |
[8] | ZHANG Pingchuan, DU Mingyu, YAO Chengyun, HE Xia, YIN Li. Mechanism of circular RNA hsa_circ_0012779 expression in nasopharyngeal carcinoma and its influence on cell biological behavior [J]. China Oncology, 2023, 33(5): 445-451. |
[9] | XIAO Lanshu, PAN Liudi, LIU Yi, WANG Jie, CHEN Hui. LncRNA DLEU7-AS1 contributes to proliferation and migration of gastric cancer by regulating MSN transcription [J]. China Oncology, 2023, 33(4): 327-341. |
[10] | CHEN Hong, CHEN Junxia. Effect of hsa_circ_0001573 on biological behaviors of breast cancer cells and its molecular mechanism [J]. China Oncology, 2023, 33(4): 342-353. |
[11] | PENG Jin, WANG Weining, TAN Zhi, YE Guannan, ZHOU Zhen. The mechanism of m6Am-modifying enzyme PCIF1 regulating target gene ACOT8 in gastric cancer progression [J]. China Oncology, 2023, 33(4): 368-376. |
[12] | FU Qingsheng, JIN Lei, ZHANG Xudong, XU Yingchen, ZHU Chunfu, QIN Xihu, WU Baoqiang. Effect of tRF-Pro-CGG on the biological behavior of mouse pancreatic cancer cells and its molecular mechanism [J]. China Oncology, 2023, 33(3): 241-249. |
[13] | WANG Xiaoxiao, CHEN Xi, LI Minmin, SONG Ning, SUN Dongyuan, JIANG Yingying. Effects of NOL8 on cell proliferation, migration and invasion of oral squamous cell carcinoma [J]. China Oncology, 2023, 33(1): 45-53. |
[14] | ZHANG Jingchen, LI Xin, LI Jiangtao, LI Haiping, CHEN Yanli, NIU Bing, QI Chuanchuan, YE Beibei. LINC02163 targeting miR-338-3p affects proliferation, invasion and migration of breast cancer cells [J]. China Oncology, 2022, 32(9): 818-826. |
[15] | DUAN Yuqing, XIA Ning, JIA Yunlong, ZHENG Wenya, LIU Lihua. SRSF1 promotes proliferation, invasion and migration of esophageal squamous cell carcinoma Eca9706 cells by regulating VEGFA mRNA alternative splicing [J]. China Oncology, 2022, 32(3): 191-199. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
沪ICP备12009617
Powered by Beijing Magtech Co. Ltd